
D 7.3: A MODEL-BASED TESTING APPROACH FOR
EVOLUTION

Fabrice Bouquet, Frederic Dadeau, Stephane Debricon, Elizabeta Fourneret, Pierre-
Alain Masson (INR), Zoltan Micksei, Daniel Varro (BME), Berthold Agreiter, Michael
Felderer (UIB), Bruno Legeard, Olivier Albiez, Julien Botella, Olivier Bussenot, Ed-
die Jaffuel, Christophe Grandpierre, Jean-Luc Hamot, Aurelien Masson, Dooley
Nsewolo (SMA), Elisa Chiarani, Federica Paci, Fabio Massacci (UNITN), Jan Ju-
rjens (OU/TUD)

Document Information

Document Number D7.3.
Document Title A model-based testing approach for evolution
Version 1.5
Status Draft
Work Package WP 7
Deliverable Type Report
Contractual Date of Delivery M24
Actual Date of Delivery xx xx 2010
Responsible Unit SMA
Contributors SMA, INR, UIB, BME, TUD, UNITN
Keyword List Model-based testing, Software Evolution, Security

Properties
Dissemination level PU

D7.3 A MBT approach for evolution | version 1.5 | page 1 / 82

Document change record

Version Date Status Author (Unit) Description
0.1 10.09.3 Draft S. Debricon (INR) B.

Legeard (SMA)
Summary - 1st draft

0.2 10.09.24 Draft S. Debricon (INR) J.
Botella (SMA)

Architecture

0.3 10.10.1 Draft F. Bouquet, E.
Fourneret, P-A.
Masson (INR)

MBT Process

0.4 10.10.16 Draft F. Bouquet, F. Dadeau
(INR)

Links WPs

0.5 10.10.22 Draft B. Agreiter, M.
Felderer (UIB)

TTS

0.6 10.11.2 Draft B. Legeard (SMA) Introduction - Key chal-
lenges

0.7 10.11.10 Draft B. Agreiter, F.
Innerhofer-Oberperfler
(UIB)

WP2–WP5–WP7 links

0.8 10.11.18 Draft Julien Botella, Olivier
Bussenot, Eddie
Jaffuel, Christophe
Grandpierre, Jean-
Luc Hamot, Aurelien
Masson (SMA)

WP7 Demonstrator -
Test generation tech-
nologies

0.9 10.11.25 Draft B. Agreiter, M.
Felderer (UIB)

update TTS

1.0 10.11.25 Draft F. Bouquet, F. Dadeau
(INR)

Links WPs & typo

1.1 10.12.09 Draft B. Agreiter (UIB), S.
Debricon (INR)

General update

1.2 10.12.10 Draft Z. Micksei (BME), S.
Debricon (INR)

General update

1.3 10.12.15 Draft J. Bernet (GTO), S.
Debricon (INR)

General update

1.4 11.01.05 Draft S. Debricon (INR) New Executive Sum-
mary

1.5 11.01.31 Final F. Bouquet Integration of quality
check

D7.3 A MBT approach for evolution | version 1.5 | page 2 / 82

Executive summary

The objective of deliverable D7.3 is to produce a proof-of-concept implementation of a
model-based testing tool for evolution. This demonstrator provides a tool-set to ensure the
preservation of security properties for long-living evolving systems using software testing.
Therefore, the deliverable D7.3 is made of two components: a software prototype (called
WP7 Demonstrator) and this document that presents the research results, the demonstrator
architecture and a sample case study.
The main results are twofold:

• an approach for testing security properties, based on the use of test schemas that
formalize testing needs. Security properties are covered by a test generation process
using a behavioral model of the SUT and associated test schemas.

• an approach for change management by means of model comparison. Our objective
is to ensure the important criteria defined in D7.1: test repository stability, traceability
of changes, impact analysis and ability to automatically structure the test repository
into evolution, regression and stagnation test suites.

D7.3 in the Project Timeline

This deliverable is the result of task 7.3 ’Model-based testing for Evolution’ (M12-M24),
and is the milestone M24 for workpackage 7. We provide a demonstrator based on two
elements. On one hand, it uses the Smartesting test generation technologies (see D7.1
section 4 - WP7 Background), augmented with new algorithms for test generation. We also
provide an adapted architecture to help handling change analysis and a new packaging of
a standalone model animator and test generator. On the other hand, the demonstrator is
made up of new components developed within task 7.3:

1. an interpreter of test schemas for testing security properties,

2. an impact analyzer (that compares two versions of a model in order to identify the
changes and produce a change items file),

3. a test classification component (based on the change items file), that uses the model
animator and the test generator to produce tests that are organized into test suites,

4. a test publisher that manages a test repository. It keeps tracks of previous tests status
and minimizes repository changes.

This document presents the rationale of the approaches both for security property testing
and change management and describes in details the demonstrator (architecture and com-
ponents). We propose an example to illustrate the main usage scenarios and added values
for change management and testing security properties. Finally we position WP7 model-
based testing methods in the overall SecureChange process.

D7.3 A MBT approach for evolution | version 1.5 | page 3 / 82

Validation

This deliverable contains several artefacts that can be evaluated wrt validation criteria de-
fined by workpackage 1 in deliverable D1.2.

Scientific criteria

• The language described in chapter 3 falls within the criteria ’Evidence of efficiency’.

• Chapter 4 contains a description of WP7 test classification algorithm that can be as-
sociated to the criteria ’Precise computation’.

• The demonstrator described in chapter 5 will be evaluated by criteria ’Computer-aided
computation’.

Industrial criteria

• Evaluation of the industrial criteria will be the subject of deliverable D7.4 due at M36.

Integration

Integration links among the different workpackages are discussed in chapter 8. Figure 1
gives an overview of partners’ interactions with WP7. The workpackage has interfaces to
4 other work packages. The first is WP3. WP3 provides requirements and their evolutions.
The second is WP4. WP4 provides a validated security model and their evolution. The
third is WP5. WP5 provides risks associated to security properties. The last is WP6. It is
a special link because there is not direct interaction between WP6 and WP7 but they are
complementarity for security verification.

!"#$%&'

()*%&+%&'*%,'
-./0.+%&'
12#3"4#'

()*%&+%&'*%,'
-./0.+%&'
5"67+8"4"%3#'

()*%&+%&'*%,'
-./0.+%&'5+#9'

:;<'

:;='

:;>'

:;?'

@"8+AB*$/%'/%'
C4D0"4"%3*$/%'

:;E'

Figure 1: Links between WP7 and others WPs

WP3-WP7 The integration between between requirements engineering and testing engi-
neering is done at processes level. The two processes should still be understood as sep-
arate processes with their own iterations, activities and techniques for managing change.
The integrated process explains at which steps of the respective processes that the con-
ceptual level interface can or should be invoked. We distinguish between what we refer
to as shared elements on the one hand and mappable elements on the other hand. The

D7.3 A MBT approach for evolution | version 1.5 | page 4 / 82

shared elements are concepts that are common to requirements engineering and testing,
with the same semantics in both domains. The mappable elements are concepts from one
domain that are not shared by the other, but are nevertheless related to the other domain
and can be mapped to concepts of the other domain.

WP4-WP7 Based on the Global Platform life-cycle (POPS), this link shows how model-
based testing for evolving systems can benefit from the techniques developed in WP4. The
general requirement considered is ’Specification Evolution’ and the common property is
’Life-cycle consistency’.

WP5-WP7 The integration between the risk assessment methodology of WP5 and the se-
curity testing approach of WP7 is outlined in the Deliverable D.5.3 in Chapter 8. It is also
shortly reported on in the present deliverable to highlight how the solutions of WP5 and WP7
fit in the overall Integrated SecureChange Process methodology. The integration between
WP5-WP7 is in terms of mapping artifacts from the risk model domain to the test model
domain and vice versa. Based on these options for mapping of model artifacts, the risk as-
sessment activities and the testing activities are integrated so as to allow the two domains
to leverage on each other. The integration is demonstrated in the HOMES case study, ad-
dressing the change requirement of bundle lifecycle operations and the security properties
of policy enforcement and security expandability.

WP6-WP7 Workpackages can address separate issues for the protection against threats.
In fact, the interest of a connection between these two workpackages is that each hypothesis
proposed by one workpackage is tackled by the other. So the completeness of validation
can only be done if the workpackages interact as proposed in SecureChange process.

D7.3 A MBT approach for evolution | version 1.5 | page 5 / 82

TABLE OF CONTENTS

Document information 1

Document change record 2

Executive summary 3

Abbreviations and Glossary 11

1 Introduction 13

2 Demonstrator overview 16

3 Approach for testing security properties 18
3.1 Principle . 18
3.2 TestDesigner Schema Language . 19

3.2.1 Presentation . 19
3.2.2 Language Key Words . 19
3.2.3 Language Syntax . 20

3.3 Examples of Test Schemas . 20
3.3.1 Example 1 . 21
3.3.2 Example 2 . 22

3.4 Related Works and Originality . 22

4 Approach for change management in the MBT process 24
4.1 Impact of evolution on Model . 24

4.1.1 SecureChange MBT approach . 24
4.1.2 Evolution of Test Cases . 26
4.1.3 New selective test generation method 29
4.1.4 Evolution in Test Suites . 30

4.2 Impact of evolution for security properties . 33
4.2.1 Evolution of schemas and requirements 33
4.2.2 Evolution in Test Suites with respect to Security Testing 33

5 Demonstrator 35
5.1 Architecture . 35

5.1.1 SeTGaM . 35
5.1.2 Smart Publisher . 39

5.2 Test generation improvements . 40
5.2.1 Model animation API . 40
5.2.2 Test generation API . 42

D7.3 A MBT approach for evolution | version 1.5 | page 6 / 82

5.2.3 Schema-based test generator . 42
5.3 Graphical User Interface . 45

5.3.1 Chart panel . 46
5.3.2 Model selection panel . 46
5.3.3 Chart selection panel . 46
5.3.4 SeTGaM process . 47
5.3.5 Test generation process . 47
5.3.6 Test publication . 47

6 Example 49
6.1 Example . 49

6.1.1 General description of eCinema application 49
6.1.2 Test Generation with TestDesigner for eCinema 50

6.2 Evolution of the eCinema’s system . 51
6.2.1 Changes in requirements . 51
6.2.2 Selective test generation using SeTGaM for eCinema 52

6.3 Security Properties Testing on eCinema . 55
6.4 Comparison of SeTGaM with two other approaches 56

7 Telling TestStories: Another Point of View 57
7.1 Evolutions . 57

7.1.1 Requirements Evolution . 57
7.1.2 Evolution of the System or Environment 58

7.2 Methods and Techniques . 58
7.2.1 Telling TestStories Metamodel . 58
7.2.2 Test Life Cycle . 58

8 Integration in SecureChange process 61
8.1 WP3 – WP7 . 62

8.1.1 Traceability between functional requirements extracted from specifica-
tion and generated tests . 62

8.1.2 Upgrading a test model by requirements models comparison 63
8.2 WP4 – WP7 . 63

8.2.1 General process . 64
8.2.2 Concrete integration . 65

8.3 WP5 – WP7 . 66
8.4 WP6 – WP7 . 67

8.4.1 Interest of the link between WP6 and WP7 67
8.4.2 Concrete scenario on case study . 68

9 Conclusion 70

A Requirements for eCinema 72

B Requirements for eCinema Evolution 75

C Transitions for eCinema 77

D Transitions for eCinema Evolution 78

D7.3 A MBT approach for evolution | version 1.5 | page 7 / 82

LIST OF FIGURES

1 Links between WP7 and others WPs . 4

1.1 Process supported by SecureChange project 13

2.1 Overall process . 16
2.2 Demonstrator main components . 17

3.1 Syntax of the TestDesigner Schema Language 20
3.2 Evolution in the GP Card Life Cycle statechart 21

4.1 The Model-Based Testing Process . 25
4.2 Smart publisher . 26
4.3 Test case life-cycle . 27
4.4 Process to determine the status of the tests 28
4.5 Test suites composition . 31
4.6 Process for testing security properties . 33
4.7 Process for testing security properties with respect to evolution 34

5.1 SeTGaM overview . 35
5.2 The process activity diagram . 36
5.3 Test cases generation process . 37
5.4 The SeTGaM activity diagram . 37
5.5 Classification activity diagram . 38
5.6 Re-testable tests processing . 39
5.7 Smartesting Test Designer GUI . 40
5.8 Smartesting Test Designer Animation API usage 41
5.9 Smartesting Test Designer Generation API usage 42
5.10 Smartesting Schema Editor GUI . 45
5.11 The EvoTest panel . 45
5.12 Test suites chart panel . 46
5.13 Test status chart panel . 47
5.14 TestLink tool . 48

6.1 Class diagram of eCinema . 49
6.2 Statechart diagram of eCinema. 50
6.3 Class diagram of eCinema . 52
6.4 Statechart of eCinema, evolved version . 52

7.1 Telling TestStories Metamodel. 59
7.2 State machine describing the life cycle of Test elements. 60

D7.3 A MBT approach for evolution | version 1.5 | page 8 / 82

8.1 Process supported by SecureChange project 61
8.2 Links between WP7 and others WPs . 61
8.3 Using requirement model to create the test model 62
8.4 Test model upgrade process . 63
8.5 Integration between WP7 and WP4 . 64
8.6 Change story of the HOMES case study . 66

D7.3 A MBT approach for evolution | version 1.5 | page 9 / 82

LIST OF TABLES

1 Abbreviations used in the document . 11
2 Glossary . 12

3.1 Keywords for the TestDesigner Schema Language 19

6.1 Number of tests for eCinema - evolution using the Retests-all, Regenerate-all
and SeTGaM methods . 56

A.1 Requirements of eCinema. 72
A.2 Test targets of eCinema part 1/2. 73
A.3 Test targets of eCinema part 2/2. 74

B.1 New Requirements of eCinema, evolution. 75
B.2 Impacts in test targets of eCinema. 75
B.3 New test targets of eCinema, evolution. 76

D7.3 A MBT approach for evolution | version 1.5 | page 10 / 82

Abbreviations and Glossary

Abbreviations

Abbreviations References
API Application Programming Interface
FSM Finite State Machine
ISTQB International Software Testing Qualifications Board
MBT Model-Based Testing
REQ Requirement
SBTG Schema-Based Test Generator
SeTGaM Selective Test Generation Method
SUT System Under Test
TTS Telling TestStories

Table 1: Abbreviations used in the document

D7.3 A MBT approach for evolution | version 1.5 | page 11 / 82

Glossary

Term Definition
Adapter Piece of code to concretize logical tests into physical tests

Deletion Test Suite Test suite gathering tests from previous versions of the software
that are outdated or failed in the current version.

Evolution Test Suite Test suite targeting SUT evolutions
Logical Test See Test Case
Model Layer Link of model’s operations in Test cases

Model-Based Testing Process to generate tests from a behavioural model of the SUT
Status of Test Case New, obsolete (outdated, failed), adapted, reusable (re-

executed, unimpacted)
Physical Test See Test Script
Requirements Collection of functional and security requirements

Regression Test Suite Test suite targeting non-modified part of the SUT
Schema See Test Schema

Stagnation Test Suite Test suite targeting removed part of the SUT
System Model Model of the SUT used for development

Test Case A finite sequence of test steps
Test Intention User’s view of testing needs

Test Model Dedicated model for capturing the expected SUT behaviour
Test Suite A finite set of test cases
Test Script Executable version of a test case

Test Schema A regular-based expression to drive automated test generation
for testing security properties

Test Sequence See Test Case
Test Step Operation’s call or verdict computation

Test Strategy Formalization of test generation criteria
Test Objective High level test intention

Table 2: Glossary

D7.3 A MBT approach for evolution | version 1.5 | page 12 / 82

1 Introduction

This deliverable summarizes the results of the work carried out in task 3 of Work Package
7: A model-based testing approach for evolution in the context of security engineering for
lifelong Evolvable Systems.

In task 7.1 we have provided the state of the art presented in deliverable D7.1. In task
7.2 we have developed original methods and algorithms for handling model-based testing
for evolution and security testing (presented in Deliverable D7.2). The work achieved in task
7.3, presented in this document, consists in prototyping a proof-of-concept implementation
of model-based testing tool for evolution (called WP7 Demonstrator). This demonstrator is
based on Smartesting MBT technologies and integrates the WP7 results regarding change
analysis, test generation based on evolution, test generation for security properties, clas-
sification and publication of the tests in a test repository depending of the test status wrt
evolution.

Therefore, the goal of this document is to introduce the main concepts that underlie the
WP7 Demonstrator and to detail the architecture and implementation of this Demonstrator.
The evaluation of these new methods and tools is part of WP7 task 7.4 in the context of real
case studies provided by the SecureChange consortium and connected with WP1.

!"#$%&$'()*!+

,#$-.%/0+'.$1%/#$/-.#+

2#3-%.#4#*/!+

2#3-%.#4#*/!+#*5%*##.+

6+

7+
2%!8!+'*'90!/+

2%!8!+'!!#!!4#*/+

,#$-.%/0+4):#9+

;#!/+#*5%*##.+

<+

,#$-.%/0+=>"#./++

?+

!"#$%&'&$())'&($&"$(*+,'%-!$.-./*)'0&1+/2%)*./.,''
3''
45.6*0,.('7%)!$(89''
!"#$%&'&($&"$(*+,:;''
3''
4<,(-.'($$'='/.>'4<,(-.:?'@($&"$(*+,A';9''
B'

@'A'+$):#+

B#.%&$'()*+#>"#./+

C+
D+

,#$-.%/0+'.$1%/#$/+

E""9%$'()*+
;#!/+4):#9+

F-!/)4#.+

G+

,/'8#1)9:#.+

G+

Figure 1.1: Process supported by SecureChange project

Figure 1.1 gives an overall picture of the relationship between the main phases of the
SecureChange Security Engineering Process. Model-based testing for evolution is a black-
box testing phase, targeting both functional testing and testing that the SUT conforms to

D7.3 A MBT approach for evolution | version 1.5 | page 13 / 82

some security properties, and that this conformance is preserved throughout successive
evolutions. The inputs of the model-based testing process for evolution are the various ver-
sions of the requirements, the risk assessment and the security model. Model-based testing
is the automation of test design and test maintenance of models used for automated test
generation (called test models). Therefore, the MBT process ensures the continuous update
of the test repository used for checking the conformance of the SUT with its requirements
(both functional and security properties). Test Engineers (Number 7 in the Figure) drive this
process on the basis of test models and test selection criteria.
As shown in D7.1 and D7.2, WP7 research work is conducted to provide solutions (at scien-
tific and technology levels) for solving key challenges to ensure the preservation of system
security for lifelong evolving systems by means of model based tests. In a model-based
testing perspective, these key challenges concern the following four main dimensions:

• The coverage of security properties by the MBT process - How to support the val-
idation engineer to produce adequate test suites wrt security properties and to main-
tain this security test repository in the context of evolution of requirements, usages
and attacks.

• The stability of the test suite through evolution - Model-based test generation may
produce lots of tests, and a completely new test set for each new generation. But,
the convergence of the validation process is based on correcting both the SUT (in
case of implementation error) and the test repository (when tests are wrong). The
stability of the generated suites through re-generation is a key value to support a rapid
convergence of this validation process.

• The organization of the test repository wrt evolution - Time to market is always
a strong pressure for the validation team. Therefore, it is very important to separate
between deletion tests, evolution tests, regression tests and more originally, stagnation
tests, to help the validation team to prioritize test execution.

• The efficiency of this test generation process - Exploiting change impact analysis
results for test generation helps to provide an efficient test generation process in terms
of test generation time, and then shortening the test generation phase.

The main results, behind the state of the art, obtained by WP7 task 7.2 (approaches and
solutions) and task 7.3 (implementation of the Demonstrator) are the followings:

• A new schema language for driving test generation from security properties
- This schema language supports the formalization of test intention linked to each
security property to drive automated test generation.

• New approach for the classification of generated test cases wrt evolution - The
classification of the test repository after each evolution and test generation in evolu-
tion, regression and stagnation test suites help the validation team to prioritize test
execution. The concept of stagnation testing is original in the MBT area.

• New selective test generation method - The method is based on the research done
on impact analysis based on dependence results when considering test model evolu-
tions. It automatically produces new test suites to ensure that the system still conforms
its requirements.

D7.3 A MBT approach for evolution | version 1.5 | page 14 / 82

All these technical results are fully integrated in a ready-to-use prototype implementa-
tion. This Demonstrator will be evaluated in task 7.4 "Test generation for case studies" on
SecureChange HOMES and POPS case-studies.

The sequel of this document is structured as follows. Section 2 introduces the overall ar-
chitecture of WP7 Demonstrator. Section 3 presents the original concepts that characterize
the approach for testing security properties implemented in the WP7 Demonstrator. Sec-
tion 4 presents the original concepts introduced to manage evolution and implemented in
WP7 Demonstrator. Section 5 describes in depth the implementation of the Demonstrator,
and Section 6 illustrates this new MBT process on a sample example. Section 7 presents
another point of view studied within WP7 and based on Telling TestStories scenario-based
test approach. Section 8 shows how WP7 Demonstrator is related to other parts of Se-
cureChange process, particularly regarding requirements management (WP3), modeling
for security analysis (WP4), risk assessment (WP5) and verification (WP6). And finally,
Section 9 sums up the results and introduces further works to be addressed in task 7.4.

D7.3 A MBT approach for evolution | version 1.5 | page 15 / 82

2 Demonstrator overview

The demonstrator associated to this deliverable is part of an overall process depicted in
Figure 2.1. This figure is divided into 3 lanes, describing the sequence of processes applied
for 3 versions of the requirements for a specific software.
The first lane (Version 1) describes a classical model-based testing process. A test en-
gineer takes as input the requirements to model the System Under Test. This test model
gathers static and dynamic views of the system. A class diagram is used to capture the
points of control and observation, and initial state of objects. A state machine with OCL
code describes the system’s expected behavior. Schemas are also used to capture some
properties or specific behaviors of the system.
This model of the system is used by the test generation technology (based on Smartesting

Figure 2.1: Overall process

Test Designer) to compute test cases. More precisely, test cases are generated by covering
paths in the state machine. A test verdict is computed based on the OCL code collected on
the path. Test cases are sequence of actions associated to expected results at each step of
the test. The SBTG (schema-based test generator) component uses test schemas and the
UML model to produce test cases. A test repository is used to store the actual test cases,
together with the results of their execution on the SUT when done.
This general MBT process, based on a symbolic model animation has been extensively
described in SecureChange deliverable D7.1 - section 4. The behavior of the SBTG com-

D7.3 A MBT approach for evolution | version 1.5 | page 16 / 82

ponent is described in Section 5.2.3.

The following lanes (Version 2 and Version n) describe the process for the next 2 evolu-
tions of the system. In these cases, the test engineer updates the test model with the
modifications available from the new version of the requirements. New test cases will be
produced by SeTGaM (selective test generation method) and SBTG components. Then, a
smart publisher component is used to store and to organize test cases. The test repository
is updated with test cases and a test status is used to trace the history of a test case. Test
cases are gathered in new test suites to enhance functional and security testing.

The process introduced in Figure 2.1 is supported by an Eclipse stand-alone application
called EvoTest available for IBM Rational Software Architect 7.5.0 models.
We have produced several components that are presented in Figure 2.2. The EvoTest in-
terface is composed by 3 components:

• a component for the selective test generation method (SeTGaM),

• a component for the schema-based test generator (SBTG),

• a component to upgrade the test repository (Smart Publisher).

Figure 2.2: Demonstrator main components

The SeTGaM component is described in detail in Section 4.1.3 and 5.1 and uses specific
components developed for the project:

• Test Designer animation for SecureChange

• Test Designer generation for SecureChange

Those components take into account specificities introduced by our approach and are pre-
sented in Section 5.2.1 and in Section 5.2.2.

The schema-based test generator is described in Section 5.2.3 and is composed of an
editor to create schema and a specific test generator.

D7.3 A MBT approach for evolution | version 1.5 | page 17 / 82

3 Approach for testing security properties

In this section we explain the principle that we adopt for testing security properties. We
use for that a schema language that is described in Section 3.2. Further, we point out the
originality of our approach w.r.t. existing approaches.

3.1 Principle

Model Based Testing makes use of selection criteria that indicates how to select the tests
to be computed from the model. These criteria usually ensure a given structural coverage
of the model, such as all the states, or all the transitions, etc. Each test is a sequence of
operation calls with parameter values, which yields a distinguished execution of the model.
Their results are predicted by the model. Our approach for testing security properties relies
on defining additional selection criteria in the shape of test schemas. A test schema is a
high level expression that formalizes a test intention linked to a security property to drive the
automated test generation on the behavioral model.

Indeed, structural testing essentially provides control- and/or data-flow coverage of the
model. The tests exercise the functionalities of the system by directly activating and covering
the corresponding operations. Industrial studies have proven the efficiency of the method
to detect faults in an implementation (see for example [10, 4]). Nevertheless, structural
selection criteria may become insufficient to exercise the SUT in tortuous situations. We
think for example of particular scenarios where a security property could become violated
due to an unusual sequencing of the operation calls. These scenarios can be described by
means of a test schema, which we consider as a dynamic selection criteria in the sense that
it orchestrates the successive calls of the operations of the model. The tests extracted from
the model by means of a test schema are sequences of operation calls corresponding to
the unfolding of that schema.

In our approach, the security requirements that a system must fulfil are expressed as a
set of security properties. We propose test schemas as a means to exercise the system for
validating that it behaves as predicted by the model w.r.t. these security properties. Based
on his know-how, an experienced security engineer will imagine possible scenarios in which
he or she thinks the property might be violated by an erroneous implementation, and then
on the basis of this test intention, (s)he will formalize test schemas to drive the automated
test generation.

We have defined in [17] the concepts of such test schemas, in the shape of a language.
It is based on regular expressions and allows the security testing engineer to conceive its
test schemas in terms of states to be reached and operations to be called. The formal
semantics of this language has been defined in [18].

Based on this conceptual language, an operational language has been defined within the
SecureChange project and implemented as a plug-in to the Test Designer suite, to describe

D7.3 A MBT approach for evolution | version 1.5 | page 18 / 82

test schemas in a “textual” way. This language is called TestDesigner schema language.
We now present it and provide a couple of illustrative examples.

3.2 TestDesigner Schema Language

3.2.1 Presentation

A dedicated schema language editor has been implemented as a plug-in of Test Designer,
version 4.1.2. Its aim is to provide a means to express security properties at a high level,
close to a textual representation or by using usual computer programming paradigms. The
expression of these properties allows for generating test specifications, called Test Case
Specification - TCS, that are high level scenarios from which tests will be generated by Test
Designer.

The language relies on combining keywords, to produce expressions that are both pow-
erful and easy to read by a validation engineer. We first define the keywords of the language
and then its syntax.

3.2.2 Language Key Words

In Table 3.1 we list the keywords of the language. For each keyword, we give its intuitive
meaning.

for_each quantifier for an operation or a behaviour
from to introduce a list of operations or behaviours
then a separator for sequencing the targets to be reached
use to introduce an operation, a behaviour or a variable to use
to_reach to introduce a state to be reached
to_activate to introduce a behaviour to be activated
state_respecting to introduce a constraint that characterize a set of states
on_instance to introduce an instance on which a constraint holds
any_operation the set of all the operations of the model
any_operation_but the set of all the operations of the model minus the ones whose list

follows
or for a disjunction of operations or of behaviours
any_behaviour_to_cover the set of all the behaviours of the model
any_behaviour_to_cover_but the set of all the behaviours of the model minus the ones whose list

follows
behaviour_activating to introduce a list to be covered of behaviours tagged in the model
behaviour_not_activating to introduce a list whose complementary must be covered of be-

haviours tagged in the model
at_least_once repetition operator indicating to apply at least once the operation or

behaviour previously specified
ant_number_of_times repetition operator indicating to apply any number of times the opera-

tion or behaviour previously specified
$ variable prefix
REQ to introduce a tag that corresponds to a requirement
AIM to introduce a tag that corresponds to an aim

Table 3.1: Keywords for the TestDesigner Schema Language

D7.3 A MBT approach for evolution | version 1.5 | page 19 / 82

3.2.3 Language Syntax

The syntax of the language is defined by means of the grammar given in Figure 3.1. Roughly
speaking, the language makes it possible to design test schemas as a sequence of steps,
each step being composed of a set of operations (possibly iterated at least once, or many
times) and aiming at reaching a given target (a specific state, the activation of a given
operation, etc.).

SCHEME ::= (QUANTIFIER_LIST ,)? SEQ
QUANTIFIER_LIST ::= QUANTIFIER (, QUANTIFIER)∗

QUANTIFIER ::= for_each VAR from (BEHAVIOR_CHOICE
| OP_CHOICE)

BEHAVIOR_CHOICE ::= any_behaviour_to_cover
| any_behavior_to_cover_but BEHAVIOR_LIST

BEHAVIOR_LIST ::= BEHAVIOR (or BEHAVIOR)∗
BEHAVIOR ::= behavior_activating TAG_LIST

| behavior_not_activating TAG_LIST
TAG_LIST ::= { TAG (, TAG)∗ }

TAG ::= REQ: tag name | AIM: tag name
OP_CHOICE ::= any_operation | OP_LIST

| any_operation_but OP_LIST
OP_LIST ::= OPERATION (or OPERATION)∗

OPERATION ::= operation name
SEQ ::= BLOC (then BLOC)∗

BLOC ::= use CONTROL (RESTRICTION)? (TARGET)?
CONTROL ::= OP_CHOICE | BEHAVIOR_CHOICE | VAR

VAR ::= $variable name
RESTRICTION ::= at_least_once | any_number_of_times

TARGET ::= to_reach STATE
| to_activate BEHAVIOR
| to_activate VAR

STATE ::= state_representing ocl constraint
on_instance instance name

Figure 3.1: Syntax of the TestDesigner Schema Language

3.3 Examples of Test Schemas

To illustrate the use of the language, we give in this section two examples of security prop-
erties and their associated schemas.

These examples refer to the POPS case study. They are related to the card life cycle. As
show in Figure 3.2, a card have several states, the last one being the TERMINATED state.
The Card Terminate privilege for an application allows to set the card to the TERMINATED
state, therefore killing the card by permanently disabling all card content management and
life cycle functions. In other words, once in the TERMINATED state, a card cannot revert to
another state.

D7.3 A MBT approach for evolution | version 1.5 | page 20 / 82

Figure 3.2: Evolution in the GP Card Life Cycle statechart

3.3.1 Example 1

The first security property for which we exhibit test schemas is expressed informally (i.e. in
the natural language) as: For any execution, whenever the card is put in the TERMINATED
state by means of a set_status issued by a privileged application, then it should not be
possible to revert to another state.

Test Intention A scenario to test this security property can be described informally as:

• select an application with the Card Terminate Privilege;

• set the status of the card to TERMINATED;

• try all operations (to see if they behave as predicted by the model, i.e. by returning a
status word of error).

Test schema With the TestDesigner Schema Language of Section 3.2, we express it as:
for_each $X from any_operation,
for_each $Y from any_operation,

use $X at_least_once to_reach state_respecting (self.selectedApp.cardTermPriv = true)
on_instance "card” then

use set_status to_reach state_respecting (self.state = TERMINATED) on_instance "card”
then

use $Y

D7.3 A MBT approach for evolution | version 1.5 | page 21 / 82

3.3.2 Example 2

The second security property that we exhibit is expressed informally as: It should not be
possible for an application that doesn’t have the Card Terminate privilege to switch the card
life cycle state to TERMINATED, whether via a set_status command (if the application is an
SD) or via the invocation of the GPSystem.terminateCard method.

Test Intention A scenario to test the nominal case of failure of this security property can
be described informally as:

• select any application without the Card Terminate Privilege;

• set the status of the card to TERMINATED or invoke the GPSystem.terminateCard
method.

Test Schemas This scenario gives two schemas in the TestDesigner schema Language.
The first one is:

for_each $X from any_operation,
use $X at_least_once to_reach state_respecting (self.selectedApp.cardTermPriv 6= true)

on_instance "card” then
use set_status to_reach state_respecting (cardState = TERMINATED) on_instance "card”

and the other one is:
for_each $X from any_operation,
use $X at_least_once to_reach state_respecting (self.selectedApp.cardTermPriv 6= true)

on_instance "card” then
use GPSystem.terminateCard

3.4 Related Works and Originality

Other formalisms have already been used to drive the test generation from a property, or by
means of a test purpose. According to these formalisms, the test intentions are expressed
either as particular sequencings of the actions of the system (temporal view) or as properties
of the data of the system (spatial view).

Temporal logics, such as the Linear Temporal Logic (LTL) [23] allow for specifying state
properties w.r.t. several successive moments in the life of the system. Tests can be obtained
by means of a model-checker in the shape of traces of a model that contradict the properties
(see [14, 2] for example). M. Dwyer, to facilitate the use of temporal properties by validation
engineers, has identified in [9] a set of design patterns that allow for expressing as temporal
properties a set of temporal requirements frequently met in industrial studies.

Input/Output Labelled Transition System (IOLTS) and Input/Output Symbolic Transition
System (IOSTS) have frequently been used to specify test purposes [15, 13]. These for-
malisms specify sequencing of actions by using the same set of actions as the model, and
possess two trap states named Accept and Refuse. The Accept states are used as end
states for the test generation while the Refuse states allow for cutting the traces not wanted
in the generated tests. These formalisms are for example used in tools such as TGV [15],
STG [8], TorX [24], Agatha [6].

An approach described in [1] is to generate a trace by model-checking from a model
specified as an IOLTS, in which a fault have been injected by a mutation operator, according
to a fault model. The trace is then used as a test purpose for TGV.

D7.3 A MBT approach for evolution | version 1.5 | page 22 / 82

Some approaches are based on the definition of scenarios for the test, e.g. in [5, 3],
where test cases are issued from UML diagrams as a set of trees. The scenarios are
extracted by a breadth-first search on the trees. A similar approach is that implemented
in the tool Telling TestStories [11], based on defining a test model from elementary test
sequences made of an initial state, a test story and test data.

Let us also cite the Tobias tool [20, 19] that provides a combinatorial unfolding of some
test schemas. The schemas are sequences of patterns made of operation calls and pa-
rameter constraints. The schemas are unfolded independently from any model, thus the
tests obtained have to be instantiated from a model. In [22], a connection between Tobias
and the UCASTING tool is studied to produce instantiated tests. UCASTING [26] allows for
valuating sequences of operations that are not or only partially instantiated from an UML
model.

The originality of our Schema Language with respect to these related approaches can
be summarized in three points. Firstly, from a scientific point of view, the language that
is described in Section 3.2 makes it possible for the validation engineer to express his or
her test schemas by combining both the temporal and spatial views. He or she is allowed to
reason in terms of sequences of actions of the system to be called, along with the description
by means of predicates of the states to be reached by these sequences of calls. Secondly,
from a technological point of view, the language is designed to be easy to use by a validation
engineer. He or she writes test schemas in a high level language, in a textual manner, with
constructions that are close to usual computer programming paradigms. That frees him
from manipulating mathematical notations such as in the temporal logics. Thirdly, by its
expressivity, the language is designed as a mean for a validation engineer to describe his
test intentions w.r.t. a property that has to be tested. This feature strongly helps to monitor
the coverage of the properties to be tested.

The conceptual language of [17] from which the TestDesigner Schema Language origi-
nates was designed during a project (RNTL POSE) dedicated to testing the conformance of
a system to a security policy. Its conception has been guided by the experience of security
practitioners, resulting in a language that well serves the aim of testing security proper-
ties. Indeed, considering both actions to perform and states to reach is the way a security
engineer thinks of testing a security issue.

As for the SecureChange project, the conceptual language of [17] on which the Test-
Designer Schema Language is based, was presented in the deliverable D7.1 as part of
the background knowledge of WP7 partners in the field. This new version of the language
and its concrete implementation are contributions of WP7 for the SecureChange project,
and are implemented into the SBTG (schema-based test generator) component of WP7
Demonstrator (see Section 5.2.3 for the description of the SBTG component). This new ver-
sion of the language allows a validation engineer to benefit plainly from its good knowledge
of the model and to explicitly use all artifacts of the model (such as objects names).

D7.3 A MBT approach for evolution | version 1.5 | page 23 / 82

4 Approach for change management in the
MBT process

In this section, we present the full process to manage security evolution from a testing
perspective. This work is based on previous research described in sections 5 and 6 of
deliverable D7.2.

We decompose this chapter in two parts. The first part presents the needed elements
to manage evolution into a Model-Based Testing (MBT) approach. We describe the test’s
life cycle with regards to the system’s evolution. We define eight different status for the
test’s life cycle. The tests are then gathered into four dedicated sets (stagnation, evolution,
regression and deletion). Each set is used to improve an aspect of the evolution. The second
part presents the extension of the approach in order to take into account the evolution for
security properties.

4.1 Impact of evolution on Model

We start this chapter with a recall of MBT in Section 4.1.1 on the test generation process we
consider, based on UML model coverage. Then, we present, in Section 4.1.2, the concept
of test life cycle in the context of evolving software. We introduce then in Section 4.1.3 the
dependency analysis that is used to measure the impact of evolutions on a given test suite.
The classification of the tests into various test suites is given in Section 4.1.4.

4.1.1 SecureChange MBT approach

The test generation process that we consider in our approach relies on the use of a for-
mal description of the expected behavior of the SUT using UML diagrams (see Deliverable
D7.1 - Section 4, for more details). These diagrams are used to generate tests with the
Test Designer (TD) technology, which applies model coverage criteria. First we present the
type of diagrams that are taken as input by Test Designer, before explaining how tests are
generated.

The Test Generation Process

The Model-Based Testing process we consider in Figure 4.1, starts by the design of the
test model (in our case, in UML) by the test architect. Then, the test model is given as
an input to the test generator that automatically produces the test cases and the coverage
matrix, relating the tests with the covered model elements. The tests are then exported, or
published, in a test repository from which test scripts can be adapted. The execution of the
tests on the System Under Test (SUT) can be automated: the actions composing each test
are associated to a concrete command of the SUT. After the test execution, test results and
metrics are provided.

D7.3 A MBT approach for evolution | version 1.5 | page 24 / 82

Figure 4.1: The Model-Based Testing Process

Test Designer considers a subset of UML, named UML4ST [7], focusing on three kinds
of diagrams. First, a class diagram describes the data model, namely the set of classes
that represent the entities of the system, with their attributes and operations. Second, an
object diagram provides a given instantiation of the class diagram together with the test
data (i.e. the objects) that will be used as parameters for the operations composing the tests.
Finally, the behavior of the system is described by two (complementary) means: a statechart
diagram, and/or OCL constraints associated to the operations of the class diagram.

The test generation process of TD aims at achieving some given model coverage cri-
terion, according to the test generation presentation made in Section 3.1.2 of Deliverable
D7.1. More precisely, TD targets the activation of all the behaviors defined in the test model,
each behavior being either a transition in the statechart, or a path in the control-flow graph
of the OCL post-condition of each operation. In addition, TD relies on the use of tags that
annotate the dynamic parts of the model (i.e. transitions of the statechart, OCL code of
the operations). We distinguish two kinds of tags: @AIM and @REQ, both followed by an
identifier, issued from the informal specifications of the system (resp. the test targets that
the test engineer wants to define).

We see a TD test case as a sequence of steps, in which each step is a call to an opera-
tion of the model (described in the class diagram) with a given set of inputs (originating from
the object diagram) and expected outputs. Each test covers a given number of requirements
(@REQ) and aims (@AIM).

Test Designer allows to automate the computation of the test cases by using dedicated
symbolic model state exploration algorithms (see Deliverable D7.1 - Section 4, for more
details). Once generated, the tests are classified according to the tags they cover, providing
a bi-directional traceability between requirements and generated test cases.

Test Generation and Evolutions

With the current Test Designer technology, the evolution is not taken into account, meaning
that an evolution of the system is translated at the model level, and the validation engineer
has to regenerate all the tests for the new version of the model. The test repository, which
stores the tests that have been produced, is then updated with the new test suite. When
facing large models from industrial case studies and if no classification is provided for the
test cases regarding the considered evolution, regenerating all the tests can be costly. For

D7.3 A MBT approach for evolution | version 1.5 | page 25 / 82

example, as stated by Jiang et al. in [16] complete regeneration of the test suite for the
model of Microsoft protocol documentation testing project may take hours or even a full day.
Then, test engineers must check all non affected parts, which may take several days, up to
several weeks, depending on the model scale.

The objective of our work is to overcome these issues, by first analysing the impacts of
the evolutions on the model, and then, classifying the tests so as to be able to distinguish:
(i) which parts of the systems did not change (meaning that the tests covering these parts
do not need to be regenerated), (ii) which parts of the system did change (meaning that
new tests have to be generated specifically for them, or previous versions of the tests have
to be modified).

In the next section, we present a solution on how to deal with evolving test cases and
we give an overview of our test generation method for evolving systems.

Test Publication

Generated tests are exported into a database to be stored, namely a test repository. The
reusability and the future references are important for the maintenance process. We have
created a Smart publisher for the TestLink open-source web-oriented test management
system 1, to organize the test suites and gather test cases information. TestLink is a tool for
the management and the monitoring of test suites, based on PHP and a MySQL database.
Thus, to display the information when updating the repository, we added the panel Test
history, as shown in Figure. 4.2.

Figure 4.2: Smart publisher

4.1.2 Evolution of Test Cases

We present in this part the notion of evolving test cases, in which all the tests are versioned
and associated to a given status. Then, we introduce the method on which we rely in order
to obtain the test status.

Test Status

In the context of evolving systems and, thus, evolving test cases, we associate to each
test a status, that indicates its state in the life-cycle depicted in Figure 4.3. Evolution of

1http://www.teamst.org

D7.3 A MBT approach for evolution | version 1.5 | page 26 / 82

http://www.teamst.org

Figure 4.3: Test case life-cycle

status is defined by considering two versions of the model, M and M′, in which addition,
modification or deletion of model elements (operations, behaviors, transitions, etc.) have
been performed. As explained in Section 4.1.1, each test is dedicated to a given test target,
that can be either the activation of a transition in the statechart, or the coverage of a behavior
extracted from the OCL code of an operation. Evolution of the test status may be defined in
M′′ if the validation engineer decide to remove invalid tests from the repository.

Test may have a status new in case of a newly generated test for a newly introduced
target. At the first test generation stage of a project, all generated tests have the status new.

When an evolution occurs, the state of the test changes depending on the impact of
the evolutions. If none of the model elements covered by the test are impacted, it is ready
to be run as is on the new version of the model M′, without modifying the test sequence.
The test is thus said to be reusable. More precisely, there are two cases: unimpacted and
re-executed. It is unimpacted if the test sequence is identical to its previous version, and
the covered requirements still exist. The test is re-executed if it covers impacted model ele-
ments, but it can still be animated on the new version of the model without any modification
(the expected outputs –on which the oracle is based– are still the same).

If a test covers model elements impacted by the evolution fromM toM′, and if the test
cannot be animated onM′ the test becomes obsolete. There are two cases: either the test
target represents deleted model elements, and thus the test does not make any sense on
M′ and it is said to be outdated, or, the test fails when animated on model M′ (e.g. due
to a modification of the system behaviour), it is then failed. When the test case operations
can be animated but produce different outputs, a new version of the test is created in which
the expected outputs (i.e. the oracle) are updated w.r.t. M′. In this case the tests have the
status updated. When the test case operations can not be animated as is in the first version
of the test, a new operation sequence has to be computed to cover the test target. In the
latter case, tests have status adapted.

In order to discard invalid tests for M′′, the validation engineer has the possibility to

D7.3 A MBT approach for evolution | version 1.5 | page 27 / 82

Figure 4.4: Process to determine the status of the tests

change the status of outdated and failed tests into removed. These tests are irrelevant for
the versionM′′, because they cover already changed or disappeared elements forM′ and
thus, it has no more sense to consider them forM′′.

Definition 1 (Evolving Test Cases) An evolving test case tcn, where n is the version of the
model, is characterized by a pair 〈tc, status〉 where tc is the test case and status is its associ-
ated status: status ∈ {new, updated, adapted, unimpacted, re−executed, failed, outdated, removed}

We will denote status(tcn) the status associated to the evolving test case tcn.

Test Status Assignment Process

Now, we introduce the process that will be used to determine the status of a test from a
version of the model to another. This process is depicted in Figure 4.4 and relies on the
use of a high-level analysis of the impacted model elements on the statecharts. It aims at
assigning a status to each test, possibly creating additional tests to cover added or modified
targets.

As illustrated on Figure 4.4, the process is always based on two test models (the original
one (n) and the evolved one (n + 1)) and a test suite from the original model, produced
from the model-based test generation using the Test Designer technology. We first use a
dependency analysis, tag ¬ on the figure, in order to produce the dependency graphs (DG)
for both models that indicate how the model elements depend from each other. Then, we

D7.3 A MBT approach for evolution | version 1.5 | page 28 / 82

compare the state machines, tag , to identify the transitions or requirements that have been
impacted between the two versions. DG and modified elements are put together in step
® which consists in evaluating the dependencies on the impacted elements. Considering
this information and the test suite originally created from model n, it is possible to do a
preliminary classification of the tests, tag ¯, splitting them into three categories: outdated,
unimpacted, and an intermediate category named re-testable. Each re-testable test is then
animated, tag °, on the new version of the model (n + 1). When a test is animated and
produces the same expected outputs, its status is set to re-executed. When the operations
of the tests can be animated on model (n + 1) but produce different outputs, the test case
is updated. When the test can not be animated, because one of the operations can not be
activated at a given step, it is assigned a failed status. The test sequence is then modified,
tag ±, so as to reach the considered target (if it still exists in model (n + 1)). The resulting
test is adapted.

In addition, with the test classification step it is possible to identify parts of model (n+ 1)
that have not been covered by tests, corresponding to new elements that did not exist at
version n. In this case, the uncovered transitions of the model (n + 1) become test targets
for the test generation process, tag ² on the figure.

Notice that for another evolved model (n+2) it does not make sense to keep outdated
and failed tests, so the validation engineer can choose to set them as removed and drop
them into the Deletion test suite.

We now give more details of the upstream part of the process, namely, the dependency
analysis that is performed to compute the differences between the models, and their impacts
on test cases.

4.1.3 New selective test generation method

The selective test generation guides us to select tests from the model before the change
according to different techniques. This work is based on research done on impact analysis
based on dependence results for UML/OCL statechart diagrams in Delivrable 7.2 and in [12].
The data dependency algorithm is based on the pairs of definitions and uses of variables in
a graph, respecting the property specifying the absence of redefinition of variable between
a pair definition/use. The control dependence algorithm is based on the property that one
execution of transition in the graph depends from another execution. We consider that when
two transitions are data dependent, then a test covering the behavior of these transitions
may exist. If two transitions are control dependent, then a test exists and it covers their
behavoirs.

We guide the selective test generation, with the impact analysis results. Thus, our goal
here is not only to guide the regression testing, but also to manage the test suites after
evolution.

From the test model, a state diagram and its dependency graph are used for test se-
lection. Transitions of the statechart represent only one behavior of a given operation ex-
pressed using OCL (see Section 4.1.1). An evolution of the system can be unique or made
of several modifications at the same time. We consider three types of elementary modifi-
cations to represent evolution: addition, modification, or deletion of a transition for which
rules are created separately. By ”modification of a transition”, we mean a modification of
the OCL code (in the guard/effect of the transition or in the pre/post condition of its associ-
ated operation). The composition of these actions is called a complex modification and the
dependency analysis is done separately for each component [25].

For each elementary modification, we can have creation or deletion of data and/or control

D7.3 A MBT approach for evolution | version 1.5 | page 29 / 82

dependencies between two transitions. According to the changes in the dependency graph,
we classify or animate tests in order to gather them in the correct test suites. Thus, we
are able to add new tests, as well as to delete, modify existing ones or reuse them (see
Section 4.1.2).

Applying this technique, we are able to verify that: (i) evolved parts behave as we ex-
pected, (ii) evolved parts did not affect the unchanged parts and (iii) what is changed in
the model has been actually changed in the implementation.

4.1.4 Evolution in Test Suites

We describe in this section the composition of test suites we consider in order to test the
evolutions of the system. We classify the tests into four test suites: Evolution, Regression,
Stagnation and Deletion, whose specificities are now explained.

Test Suites

We consider four kind of generated test suites, each one having a specific purpose. They
are denoted with ΓX , where Γ is the notation for a test suite and X is its type. We give here
their names and an informal description of their purposes.

Evolution test suite. ΓE contains tests exercising the novelties of the system (new re-
quirements, new operations, new behaviors etc.).

Regression test suite. ΓR contains tests exercising the unmodified parts of the system.
These tests aim at ensuring that the evolutions did not impact parts of the SUT that were
not supposed to be modified. The particularity of the tests contained in ΓR is that they have
been computed from a former version of the model, that is prior to the current model version.

Stagnation test suite. ΓS contains invalid tests w.r.t. the current version of the system.
These tests aim at ensuring that the evolution did actually take place and changed the be-
haviour of the system. Notice that, these tests have been computed from a former version
of the model and contrary to regression tests, they should be invalid for the current version.
They are expected to fail when executed on the SUT (either because they cannot be exe-
cuted, or because they detect a non-conformance of the SUT w.r.t. the expected results).

Deletion test suite. ΓD contains tests, that come from the Stagnation test suite from the
previous version of the model. Moreover, as they are obsolete for the ancient version, they
may be considered as irrelevant for the current one. Thus the test engineer has the possi-
bility to dump them in the Deletion test suite.

We now describe how the test suites are filled w.r.t evolutions and test life cycle. This
description takes into account the test status defined in Section 4.1.2. Each test suite con-
tains a set of tests for a given version of the system. Our definitions rely on test cases tc
evolving from a version n to a version n + 1.

Composition of the Test Suites

We present here the rules that are used to distribute the test cases into the three kinds
of test suites. Figure 4.5 depicts how the tests are gathered in the respective test suites.

D7.3 A MBT approach for evolution | version 1.5 | page 30 / 82

Figure 4.5: Test suites composition

Basically, evolution is addressed by new and adapted tests, regression is addressed by
reusable tests, and, stagnation is addressed by outdated tests along with previous versions
of the now, adapted tests (the failed tests).

We provide here the rules, based on the test status, that are used to compute the com-
position of versions n + 1 of the test suites.

Rule 1 (New tests) A new test exists only at tcn+1 version. All new tests are added in the
Evolution Test Suite.

status(tcn+1) = new tcn+1 ∈ Γn+1
E

Rule 2 (Reusable tests) A reusable test (either unimpacted or re-executed) comes from
an existing test suite tcn ∈ Γn

E ∪Γn
R and it is unchanged tcn+1 = tcn. All these reusable tests

are added in the Regression Test Suite.

status(tcn+1) ∈ {unimpacted, re− executed} tcn+1 ∈ Γn+1
R

Rule 3 (Obsolete tests) An obsolete test comes from an existing test suite (possibly obso-
lete) tcn ∈ Γn

E ∪ Γn
R ∪ Γn

S . All tests that have been declared as obsolete are added in the
Stagnation Test Suite.

status(tcn+1) = {outdated, failed} tcn+1 ∈ Γn+1
S

Notice that the failed tests have also been recomputed to be used as adapted for the
same version.

Rule 4 (Updated tests) An updated test comes from an existing test suite tcn ∈ Γn
E ∪ Γn

R.
All tests which results have been updated are added in the Evolution Test Suite.

status(tcn+1) = updated tcn+1 ∈ Γn+1
E

Rule 5 (Adapted tests) An adapted test comes from an existing test suite tcn ∈ Γn
E ∪ Γn

R.
All tests that have been adapted are added in the Evolution Test Suite.

status(tcn+1) = adapted tcn+1 ∈ Γn+1
E

D7.3 A MBT approach for evolution | version 1.5 | page 31 / 82

Notice that the previous versions (failed tests) are added in the Stagnation Test Suite.

Rule 6 (Removed tests) A removed test comes from the Stagnation test suite tcn+1 ∈
Γn+1
S . All tests that have been declared as removed by the validation engineer in (n+ 2) are

added in the Deletion Test suite.

status(tcn+2) = {removed} tcn+2 ∈ Γn+2
D

We now detail how the SeTGaM is used for computing the impact of evolution when
testing security properties in a system by the mean of test schemas (see Chapter 3).

D7.3 A MBT approach for evolution | version 1.5 | page 32 / 82

4.2 Impact of evolution for security properties

In this section we present how to manage the impact analysis when testing security prop-
erties. On one side, in the MBT process, we create test models to cover requirements
originating from the system specification. On the other side, we have the security properties
expressed in textual form, used to design test schemas that capture the test intentions for
each security property, with a formal language (see Chapter 3).

Using the test schemas and the data given in the test model, it is possible to automati-
cally unfold schemas into several Test Case Specifications (TCS), as described in a previous
part 3.2. Then TCS are sent to the test generator to automatically generate the correspond-
ing tests, as presented on Figure 4.6. An experienced testing engineer can create complex
and powerful test schemas to test security properties. By powerful, we mean here that the
number of TCS obtained from a test schema may be very high.

Figure 4.6: Process for testing security properties

4.2.1 Evolution of schemas and requirements

In the evolution process, we can consider three kinds of changes: (i) the test schema can
evolve, (ii) the requirement, and thus the model, can evolve and we can use the same test
schemas for security testing or (iii) they both can evolve. A schema modification leads to
the addition or the removal of the existing one. Thus, we consider three status of schemas:

• Unchanged

• New

• Deleted

As depicted on Figure 4.7 a schema with New status leads to generation of a new test
cases.

The Deleted status, implies the removal of the associated test cases. This set of actions
can be done using the traceability feature. For an Unchanged schema, if an evolution occurs
in the model, we gather the associated tests in a test suite and we then apply the SeTGaM
process as described in Section 4.1.

4.2.2 Evolution in Test Suites with respect to Security Testing

In this section, we detail the composition of test suites that are considered for evolution man-
agement in security testing. We classify tests into four test suites: Evolution, Regression,
Stagnation and Deletion Test Suite (see Figure 4.5). This latter contains all removed test

D7.3 A MBT approach for evolution | version 1.5 | page 33 / 82

Figure 4.7: Process for testing security properties with respect to evolution

cases, that have no more sense to keep them in the history, as described in Section 4.2.1.
The approach for management evolution for security properties extends the definition of
removed tests, to test that may come from a deleted schema, as given in the rule below.

Rule 7 (Removed tests - extension) In the process of security properties evolution we
consider that the associated schema is deleted and then we create a new one. Using
the traceability link between schema and tests, the test engineer can gather corresponding
tests and set their life cycle to removed. Thus, we give here the extended definition of this
type, that a test can be set to removed as result of schema deletion. All tests that have
been declared as removed are placed into the Deletion Test Suite of the current version.

status(tcn) = {removed} tcn ∈ Γn
D

D7.3 A MBT approach for evolution | version 1.5 | page 34 / 82

5 Demonstrator

This section presents the demonstrator associated to this deliverable. The developments
associated with the methodological process are described in the following sections. First,
the conceptual architecture of this research prototype is detailed in Section 5.1. Then, the
SBTG (schema-based test generator) component and some new features for structuring the
test model provided for the SecureChange project are presented in Section 5.2. Finally user
interface screen captures are shown in Section 5.3.

5.1 Architecture

The architecture of the demonstrator is divided into two components that we describe in the
following sections.

5.1.1 SeTGaM

This section introduces the conceptual view of the SeTGam process and internal com-
ponents. They are divided into an impact analyzer and a test classification algorithm.
Components are shown in Figure 5.1. The impact analyzer uses two versions of a model

Figure 5.1: SeTGaM overview

(i) to compute a dependency graph for each version, (ii) to compare state machines and
(iii) to evaluate changes between versions. This analyzer produces a file that will be used

D7.3 A MBT approach for evolution | version 1.5 | page 35 / 82

by the test classification algorithm. This process is described in details in Section 4.1.3.

Figure 5.2 shows the activity diagram for the demonstrator process (for an initial and up-
dated version of the test model). This process has two test models as inputs: in_model_n
and in_model_n+1.

Figure 5.2: The process activity diagram

The first activity, depicted in Figure 5.3, is the initial test cases generation. Test cases are
sequences of actions associated to an expected result after the test execution on the SUT.
The test model of the system is used by Test Designer to compute test cases. As explained
previously, test cases are generated by covering paths in the state machine. A test verdict
is computed based on the OCL code collected on the path.
The next step of our process is the test cases computation for the newest model, also called

SeTGaM. This activity takes as inputs the two test models and the list of tests produced by
the previous tests generation. As a result, the activity produces a new list of tests. The list
of tests is given in an XML file.

The SeTGaM process is presented in Figure 5.4. The first step is the transformation of our
test model files into files with specific format that are used internally. The transformation
allows the process to be as independent as possible of the file format used as input. Then,
they are used as parameters for the state machine comparison that produces an XML struc-
ture containing all detected changes in the models.

Concurrently, control and data dependencies are computed for each version of the model.
The results of this processing are two XML structures containing the current detected de-
pendencies.

To summarize, the produced structures by the previous steps are:

• changes in the models,

• data and control dependencies for model n,

D7.3 A MBT approach for evolution | version 1.5 | page 36 / 82

Figure 5.3: Test cases generation process

Figure 5.4: The SeTGaM activity diagram

• data and control dependencies for model n+1.

They are the input for the test classification activity. This activity will assign a status to each
detected change used in the next activity: the actual classification.

D7.3 A MBT approach for evolution | version 1.5 | page 37 / 82

Figure 5.5: Classification activity diagram

The classification, as shown in Figure 5.5, deals with four main processes:

• Re-testable tests processing,

• Outdated tests processing,

• Reusable tests processing,

• Uncovered transitions processing.

For these activities, the new version of the model is used with the list of previously generated
tests and detected changes in models. The result is a new XML file used by the Smart Pub-
lisher component to update the test repository, which contains details about tests lifecycle.

The most complex activity is the re-testable tests processing, depicted in Figure 5.6. Based
on the classification rules provided by the previous activity and the list of tests produced by
the previous generation, the re-testable tests are identified. The test animation component,
presented in Section 5.2, is used to define if a test can be re-executed as is or if it needs to
be regenerated. That is done by the generation component.

Outdated and reusable tests are processed in the same way by creating a new test suite,
filled by the identified tests.

Finally, uncovered transitions are used by the test generation component to produce new
tests. These tests are then added to a new dedicated test suite. All test suites previously
created from existing or new tests are written in a new file that is used by the following step

D7.3 A MBT approach for evolution | version 1.5 | page 38 / 82

Figure 5.6: Re-testable tests processing

of the process.

We have presented in this section a set of conceptual elements that were used to guide
the development of the SetGaM component sub-part of the deliverable. The next compo-
nent is the Smart Publisher that takes the tests and stores them in a test repository.

5.1.2 Smart Publisher

The generated tests resulting from the previous step will be used to upgrade a test reposi-
tory. This tool is useful for a test engineer to manage test cases. It is also used to track test
execution on the implementation and to store results of this execution. A link is also possible
with a bug tracker to give some feedbacks to the development team. For the SecureChange
project, we use an Open Source test repository called TestLink in version 1.8. TestLink is a
GPL licensed tool that manages test cases organized in test plans. After a test execution on
the system’s implementation, the results (failures or successes) are stored and published in
execution reports. They are used to check the requirements coverage.
TestLink is an independent tool with a PHP based interface using a MySQL database that
can be linked to bug tracker tools (such as Bugzilla).

The first test publishing in TestLink produces a new project in the test repository. In the
root folder, two folders are created: one for functional tests and the other for security tests.

D7.3 A MBT approach for evolution | version 1.5 | page 39 / 82

This structure will remain stable throughout the following test publishing. The Smart Pub-
lisher creates several folders based on the SeTGaM method (Evolution, Stagnation and
Regression) inside the functional tests folder which can contain several other folders based
on the model structure.

During a system life, the test engineer produces several test models based on the evolution
of a given specification. A new publishing is done for each version after a test generation.
Its impact should be as small as possible because it is a real challenge for the test engineer
to keep track of test cases. To do so, the test repository structure should not change and
each change should be traceable. For each publication if a test has new status according
to SeTGaM then the current version of the test is deactivated in the test repository and its
previous status is stored with the previous execution results. If a test moves into a new test
suite then the suite is stored in a history panel, helping the test engineer to keep track of the
previous position of the test.

5.2 Test generation improvements

After the test classification, in order to provide new test suites corresponding to the new
model version, SetGaM uses two components provided by Smartesting that make it possible
to animate the test sequences on the model, and to generate new tests if needed. We
further present the SBTG (schema-based test generator) component in this section, which
is the demonstrator tool chain implementing Test Generation for Security Properties and
Test Schema Management.

5.2.1 Model animation API

The Smartesting animation component enables to play sequences of valuated operations
on the test model, in order to compute the expecting results and check what behaviours rep-
resented in the model have been covered by the sequence. At the beginning of the project,
this component was only accessible from the Test Designer GUI as shown in Figure 5.7.

Figure 5.7: Smartesting Test Designer GUI

D7.3 A MBT approach for evolution | version 1.5 | page 40 / 82

SeTGaM has its own GUI (see Section 5.3), that is independent from the Smartesting
Test Designer tool. A Java API has been created in order to enable the animation process
to be used by SeTGaM, without opening the Test Designer tool. It is now a standalone Java
library.

Figure 5.8: Smartesting Test Designer Animation API usage

This library enables SeTGaM to classify the re-testable tests (as shown in Figure 5.8).

• Each re-testable test is animated on the new model version.

• Each re-testable test life cycle is updated. It can be :

– re-executed if the animation of the sequence is equivalent to the previous test
– failed if the animation of the sequence fails on the new test model. A new test

must be generated to replace this sequence.
– updated if the animation of the sequence succeeds, but expected results must

be updated

• If needed the re-testable test expected results are updated

In addition to the actual Smartesting Test Designer animation engine, specific features
have been developed for the needs of the Secure Change project. These features are:

• the capability to easily compare the animation result with a previous generated test

• the capability to identify the changes between an animated sequence on two differ-
ent model versions (used for test classification). At each step of the test, different
changes can be identified:

– the expected result after the step
– the requirements covered by the step

D7.3 A MBT approach for evolution | version 1.5 | page 41 / 82

5.2.2 Test generation API

The generation component allows to create tests sequences that cover specific behaviours
(transitions) represented into the test model. As for the model animation, the test generation
feature of Smartesting was only accessible from the Test Designer GUI.

A Java API has been created in order to enable the generation process to be used by
SetGaM. It is used at different steps of the SetGaM process as shown on Figure 5.9 :

Figure 5.9: Smartesting Test Designer Generation API usage

• It is used to generate a test for each uncovered transition of a given model version.
The new test is classified as new.

• It also makes it possible to generate a new test for each test that failed during the ani-
mation process. This test must cover the same transition as the previous test version.
The new test is classified as adapted.

5.2.3 Schema-based test generator

For the Secure Change project, one goal is to be able to generate tests from Security Prop-
erties. This is the role of the schema-based test generator (SBTG) component. This com-
ponent is a research prototype developed to extend Test Designer generation engine. The
new engine allows the Test Generation based on Test Schemas, that are created from the
Security Properties (see Section 3.3). A new Test Schema editor has been created as well
as new test generation facilities.

SBTG

Initially, Test Designer focuses only on the functional test generation based on a structural
coverage of the test model (mainly behavioural coverage). For instance, on the POPS case

D7.3 A MBT approach for evolution | version 1.5 | page 42 / 82

study, the test generation engine was able to generate a test that covered

• "terminate the card with setStatus command"

But because of the need to test from Security Properties (see Section 3), the ability to
generate a test case that covers a specific sequence of several functional behaviours and/or
states has been implemented. The new engine is now able to generate a test that covers:

• "lock the card"

• THEN "unlock the card"

• THEN "terminate the card with setStatus command"

The main effort for the SBTG component was to improve the generation engine in that
way. In order to take into account the SBTG component into the Smartesting Test Designer
software, the internal architecture has been deeply changed. This represented a new chal-
lenge that was necessary because the treatment of Test Schemas for the Test Generation.

Test Schema treatment for Test Generation

A test Schema is not used as is to generate Test Cases. It must be pre-processed to create
Test Objectives that will be used by the new generator engine to create the Test Cases. For
each Test Schema, several test cases can be generated. For instance, consider the follow-
ing Test Schema:

for_each $X from setStatus or storeData or installForInstall,
use any_operation at_least_once to_reach "selectedApp.cardTermPriv = true" then

use set_status to_reach "cardState = TERMINATED" then
use $X

Here, one test will be generated for each operation of the model that can be used to
instantiate the "X" variable, so three tests will be generated. Those tests must respectively
cover the following sequences:

use any_operation at_least_once to_reach "selectedApp.cardTermPriv = true" then
use set_status to_reach state_respecting "cardState = TERMINATED"then
use setStatus

use any_operation at_least_once to_reach "selectedApp.cardTermPriv = true" then
use set_status to_reach state_respecting "cardState = TERMINATED"then
use storeData

use any_operation at_least_once to_reach "selectedApp.cardTermPriv = true" then
use set_status to_reach state_respecting "cardState = TERMINATED"then
use installForInstall

These 3 test objectives are sent to the new Test Designer generation engine, that pro-
duces the following Test Cases:

D7.3 A MBT approach for evolution | version 1.5 | page 43 / 82

Test 1: card.nominal_openSecureSession(lc_00, sm_CMAC, KVN_00h)
- SUCCESS
card.nominal_setUpISDKeys()
- SUCCESS
card.APDU_setStatus(sm_CMAC, lc_00, CARD, INITIALIZED, aid_ISD)
- SUCCESS
card.nominal_setUpCASDandVASD()
- SUCCESS
card.APDU_setStatus(sm_CMAC, lc_00, CARD, SECURED, aid_ISD)
- SUCCESS
card.APDU_setStatus(sm_CMAC, lc_00, CARD, TERMINATED, aid_ISD)
- SUCCESS
card.APDU_setStatus(sm_CMAC, lc_00, CARD, SECURED, aid_ISD)
- ERROR_CARD_TERMINATED

Test 2: card.nominal_openSecureSession(lc_00, sm_CMAC, KVN_00h)
- SUCCESS
card.nominal_setUpISDKeys()
- SUCCESS
card.APDU_setStatus(sm_CMAC, lc_00, CARD, INITIALIZED, aid_ISD)
- SUCCESS
card.nominal_setUpCASDandVASD()
- SUCCESS
card.APDU_setStatus(sm_CMAC, lc_00, CARD, SECURED, aid_ISD)
- SUCCESS
card.APDU_setStatus(sm_CMAC, lc_00, CARD, TERMINATED, aid_ISD)
- SUCCESS
card.APDU_storeData()
- ERROR_CARD_TERMINATED

Test 3: card.nominal_openSecureSession(lc_00, sm_CMAC, KVN_00h)
- SUCCESS
card.nominal_setUpISDKeys()
- SUCCESS
card.APDU_setStatus(sm_CMAC, lc_00, CARD, INITIALIZED, aid_ISD)
- SUCCESS
card.nominal_setUpCASDandVASD()
- SUCCESS
card.APDU_setStatus(sm_CMAC, lc_00, CARD, SECURED, aid_ISD)
- SUCCESS
card.APDU_setStatus(sm_CMAC, lc_00, CARD, TERMINATED, aid_ISD)
- SUCCESS
card.APDU_installForInstall()
- ERROR_CARD_TERMINATED

Those tests cases can be executed on the system under test. They are automatically
generated from the Test Model and the Test Schemas, that are manually edited from Secu-
rity Properties.

D7.3 A MBT approach for evolution | version 1.5 | page 44 / 82

Test Schema editor

In order to be able to create the Test Schema, an editor has been created. It is an Eclipse
plugin as shown on Figure 5.10.

Figure 5.10: Smartesting Schema Editor GUI

This editor offers syntax highlighting and code completion for Test Schema files (with the
".sch" extension). As a schema file is saved, it can be used as it to generate the tests.

5.3 Graphical User Interface

This section describes the demonstrator implementation. An Eclipse stand-alone application
called EvoTest was developed to provide a graphical interface to the project. Application is
based on IBM Rational Software Architect (RSA) UML models. This modeler is used for test
models design. Figure 5.11 shows the EvoTest panel and its components which are:

Figure 5.11: The EvoTest panel

• A chart panel containing a pie chart or a bar chart for test suites or test status

• A model selection panel to select two model version to use with SeTGaM

D7.3 A MBT approach for evolution | version 1.5 | page 45 / 82

• A chart selection panel to configure the chart panel

• A button to start the SeTGaM process

• A button to start the test generation process

• A button to start the test publication in the test repository

These components are detailed in the next section.

5.3.1 Chart panel

This panel is only available after the SeTGaM process is called. It shows a graphical repre-
sentation of the test suites composition.

5.3.2 Model selection panel

This panel is composed of two combo-boxes to select two test model versions. All available
and opened UML models are filtered and can be selected. These fields are mandatory to
start the SetGaM process. The process uses XML files with .tdmodel extension produced
by a Smartesting Export plugin.

5.3.3 Chart selection panel

There are two charts available:

• Test suites and

• Test status

The test suite view is a bar chart (Figure 5.12) showing the number of test created in each
test suite type (Evolution, Stagnation and Regression).

Figure 5.12: Test suites chart panel

The test status chart offers a pie chart (Figure 5.13) of the available tests for each status
defined by the SeTGaM process (see Section 5.1.1). It gives an overview of what was done
by the process, and how many tests will be generated. We now describe the behavior of the
three buttons available on the EvoTest.

D7.3 A MBT approach for evolution | version 1.5 | page 46 / 82

Figure 5.13: Test status chart panel

5.3.4 SeTGaM process

The button starts the first part of the process, described in Section 5.1.1 and stop after
the tests classification. The chart panel is then updated to reflect the results obtained by
SeTGaM.

5.3.5 Test generation process

This button starts the process that generates tests with Failed or New status after the
SeTGaM process. They must be re-generated by the Smartesting component presented
in Section 5.2.2. The generation process is not included in SeTGaM to let the user choose
whether or not he wants to generate.

5.3.6 Test publication

The final step of the process is the publication in a test repository. The publisher is a java
library called by the EvoTest.
The component uses two XML files as parameters. The first file contains the publisher
configuration, such as database name and user identification. The second file is the XML
file produced by SeTGaM and containing tests. Figure 5.14 shows the tool interface. On
the left panel we can see the structure of the project. The root folder is the model used for
testing. Then we can see the functional test suite (extracted from the test model) containing
the three test suites introduced by SeTGaM. Each folder contains tests that can be loaded
in the right panel.
This panel contains a history panel that traces the status of the selected test during the
previous publication. This is an iterative process so the status changes during the tests life
cycle.

D7.3 A MBT approach for evolution | version 1.5 | page 47 / 82

Figure 5.14: TestLink tool

D7.3 A MBT approach for evolution | version 1.5 | page 48 / 82

6 Example

In this chapter, we describe the use of the presented SeTGaM approach on a simple case
study and we give a comparison with two other possible approaches for test generation
when dealing with evolution.

6.1 Example

In this section, we describe the running example based on an eCommerce application eCin-
ema. First, we give a general description of the application and its model. Next, we present
the generated tests for the model with Smartesting TestDesigner.

6.1.1 General description of eCinema application

The eCinema is an application aiming at booking movie tickets. The UML class diagram we
have designed contains the objects managed by the application: eCinema, movies, tickets
and users. The eCinema class models the system under test (SUT) and provides the API
operations offered by the application (see Figure 6.1).

Figure 6.1: Class diagram of eCinema

This case study allows to users to buy cinema tickets, to display bought tickets for movies
as well as to subscribe and log in to the application. Several requirements have been iden-
tified, such as: (1) the user must be registered and connected to access the proposed

D7.3 A MBT approach for evolution | version 1.5 | page 49 / 82

services, (2) after registration level, the user may deposits money on its cinema account,
(3) the registration is valid only if the user’s name and password are valid and if the user is
not already registered, (4) the user must be connected in order to buy tickets, (5) the user
can display all selected tickets for movies, (6) the user can delete one, several or even all of
the cinema tickets, (7) cinema tickets are prices according to cinema’s decision board and
the price is the same for each movie.

Figure 6.2: Statechart diagram of eCinema.

The SeTGaM methodology is applicable on behaviors, which are expressed by using
OCL code in guards or actions in transitions of an UML statechart (see Figure 6.2). You
can find the list of transitions of the eCinema statechart in Appendix C. Each transition
name starts by the event operation, followed by a short name of the transition’s performed
behavior.

We tag requirements by using the keyword REQ. Each requirement is separated in sev-
eral behaviors tagged by the keyword AIM. The test target is one behavior of a requirement
expressed by OCL code in a transition. To manage traceability between the requirements
and the behaviour on one side and the test targets on the other side, each test target is
represented by a couple of REQ/AIM. For eCinema we have identified seven requirements
and twenty-five test targets (see Section 4.1.1 for more details on this method). For the list
of these elements that are covered in eCinema, refer to Appendix A.

6.1.2 Test Generation with TestDesigner for eCinema

As depicted on Figure 2.1 first we use the Smartesting TestDesigner technology to compute
test cases by covering paths and behaviors in the statechart, which are expressed by actions
on transitions. The test generation process of Test Designer will target the coverage of the
path of the model and/or the behaviors of the OCL constraints describing operation. For
example, the following test case can be produced, aiming at testing the successful buying
of ticket, or the buyTicket command.

ECinema::sut.login(REGISTERED_USER, REGISTERED_PWD);

D7.3 A MBT approach for evolution | version 1.5 | page 50 / 82

ECinema::sut.buyTicket(TITLE1);

This test case covers the test target: @REQ: BASKET_MNGT/BUY_TICKETS and
@AIM: BUY_Success of the buyTicket command (see Appendix A), by activating the action
of the transition buyTicket(in_ticket) - BASKET_MNGT/BUY_TICKETS.

Notice that this test case activated also the action of the transition login(in_userName,
in_userPassword) - LGN_SUCCESS and thus it covers also the test target: @REQ: AC-
COUNT_MNGT/LOG and @AIM:LOG_Success of the login operation.

For our model, to cover all the targets, 20 tests were computed. Each test is described
by the name of the target operation and in parenthesis the associated test’s id is written.
Generated tests for eCinema are listed below:

* buyTicket (f2-31-6d), buyTicket (f2-36-46), buyTicket (f2-fc-81)

* closeApplication (f2-bc-1c)

* deleteAllTickets (f2-3d-8a)

* deleteTicket (f2-65-d1)

* goToHome (f2-09-fa), goToHome (f2-0b-a0)

* login (f2-cd-a5), login (f2-e1-71), login (f2-fc-c8)

* logout (f2-9b-b1), logout (f2-ab-dd)

* registration (f2-1e-13), registration (f2-26-df), registration (f2-e2-64)

* showBasketPrice (f2-32-8a), showBasketPrice (f2-e8-51)

* showBoughtTickets (f2-6a-c2)

* unregister (f2-06-f5)

6.2 Evolution of the eCinema’s system

In this section we describe changes applied to the eCinema application, the impacts on the
model and then how we have applied SeTGaM methodology to produce new test suite.

6.2.1 Changes in requirements

For the study, we have made an evolution of the system and added the notion of cinema
subscriptions for users (e.g. for senior costumers) and cinema’s account management.

More precisely, for this evolution, the following changes are introduced: (i) at the regis-
tration level, the user chooses its type of subscription, (ii) a subscription can be changed at
any moment, (iii) the proposed subscriptions are: child, student, normal, senior and there
is one free ticket for ten tickets bought, (iv) ticket fees are linked to the selected subscription,
and (v) the user can manage its cinema account (see Figure 6.3). The user’s subscription
and the account management are modeled with a newly added operations.

Each transition represents one requirement’s behaviour and we add a pair of REQ/AIM
to each transition. When taking into account the system’s evolution, two new states: Bal-
anceManagement and SubscriptionManagement (see Figure 6.4), twenty-four new transi-
tions were added to the statechart, seven were modified and two were deleted (detailed in
Appendix D).

D7.3 A MBT approach for evolution | version 1.5 | page 51 / 82

Figure 6.3: Class diagram of eCinema

Figure 6.4: Statechart of eCinema, evolved version

Moreover, we have identified two new requirements which produced twenty-four new
and nine impacted test targets (see Appendix B).

6.2.2 Selective test generation using SeTGaM for eCinema

We have now the new version of the eCinema model. The next step is to generate tests
with respect to evolution, using the SeTGaM approach. The changes may impact the model
elements that cover existing requirements and test targets, which have been already enu-
merated in Appendix B. Using SeTGaM we have the possibility to compute the impact on the
model, and thus minimize the impact on the test suite. Therefore, it depends on the model’s
size and dependent elements, the order of transition’s activation or the use of different data.

D7.3 A MBT approach for evolution | version 1.5 | page 52 / 82

To illustrate the approach we are going to take into account each type of change: deletion,
addition and modification of transition and thus of test target.

Remark: To make the reading and the comprehension of SeTGaM approach on the ex-
ample easier, we define short names for the test targets used in the description below:

• @REQ: BASKET_MNGT/BUY_TICKETS | @AIM: BUY_Success is replaced by Buy_success

• @REQ: BASKET_MNGT/BUY_TICKETS | @AIM: BUY_Success/NORMAL is replaced
by Buy_normal_Subscription

• @REQ: BASKET_MNGT/BUY_TICKETS | @AIM: BUY_NO_MORE_MONEY is re-
placed by Buy_no_more_money

• @REQ: BASKET_MNGT/BUY_TICKETS | @AIM: BUY_Sold_Out is replaced by Buy_no_more_ticket

• @REQ: BASKET_MNGT/REMOVE_TICKETS | @AIM: REM_Del_Ticket is replaced
by Delete_ticket

• @REQ: BASKET_MNGT/REMOVE_TICKETS | @AIM: REM_Del_All_Tickets is re-
placed by Delete_all_tickets

• @REQ: ACCOUNT_MNGT/REGISTRATION | @AIM: REG_Unregister is replaced by
Unregister_success

• @REQ: ACCOUNT_MNGT/REGISTRATION | @AIM: REG_Success is replaced by
Register_success

Deletion : with the model comparison we have found that there are two deleted test tar-
gets: Delete_ticket and Buy_success. For each deleted target we classify as outdated the
corresponding tests, given below:

• deleteTicket (f2-65-d1)

• buyTicket (f2-31-6d)

Each modification may induce changes in activated paths in the statechart, thus one state
can become inaccessible from another and some tests can become irrelevant. When tak-
ing into account dependencies in both models we can say which elements and tests are
impacted by the deletion. For instance, the Delete_ticket target affects the following behav-
iors:

• Buy_success

• Buy_no_more_money

• Buy_no_more_ticket

• Delete_all_tickets

Intuitively, we want to check tests for each target and animate them to obtain a verdict. If
we take a look at the made evolution (see Appendix B), we can conclude that in this case,
Buy_success and Buy_no_more_money are already part of the evolution i.e Buy_success
is deleted and Buy_no_more_money is modified. To decide about the tests, that they cover,

D7.3 A MBT approach for evolution | version 1.5 | page 53 / 82

in this case we apply rules for deletion and modification respectively (for further information
see also paragraph Modification).

When using SeTGaM we may face the problem that one test covers several targets
that refer to a evolved transition. For example, in this case, the test buyTicket (f2-31-6d) is
covering the target Buy_no_more_ticket, nevertheless it covers the deleted Buy_success.
Also, the test deleteAllTickets (f2-3d-8a), which covers the target Delete_all_tickets, covers
also the deleted Buy_success. Both tests are already classified as outdated. The problem
that appears here is that the targets: Buy_no_more_ticket and Delete_all_tickets are no
longer covered by any test.

To respond this problem, the approach takes into account that we may loose tests cov-
ering existing test targets and thus requirements. So, at the end of the process, if needed,
tests are generated for all uncovered targets.

Addition: We have added twenty-four new test targets in the new model. To illustrate the
method when addition of test targets occurs, we take as sample one added test target, for
instance Buy_normal_Subscription.

As for removed targets, we are interested in discovering affected elements and select
corresponding tests. Then, we need to symbolically animate selected tests and obtain a
verdict about their validity. In our case, the following targets are impacted by the added
Buy-_normal_Subscription:

• Buy_no_more_money

• Buy_no_more_ticket

• Delete_all_tickets

• Unregister_success

For added test target, the process SeTGaM needs to deal with tests that cover several
targets. One test might have been already animated. It has no sense to repeat the action,
the verdict is the same. Thus, tests covering: Buy_no_more_money, Buy_no_more_ticket,
Delete_all_tickets are not selected again.

The test unregister (f2-06-f5) covering the tagret Unregister_success is then selected as
retestable. The symbolic animation process did not made any updates on the test, thus it
is classified as Re-executed.

Modification: We illustrate the process on the test target Register_Success. Its corre-
sponding action is modified, because the registration must take into account users with
particular subscriptions. According to our results we give below the impacted elements:

• Unregister_success

• Delete_all_tickets

In this case we need to select tests for the modified target and for each impacted ele-
ment. Similarly to previous cases, tests for Unregister_success and Delete_all_tickets are
already selected.

The test buyTicket (f2-36-46), covers the modified target Register_success. The existing
test consists in registering a new user, with initially no credits on the account and then the
user tries to buy a ticket. The operation register has an additional parameter, to specify the
subscription. It is impossible to animate the test sequence as it is, so the test execution fails

D7.3 A MBT approach for evolution | version 1.5 | page 54 / 82

and it is classified as failed. To cover the target we needed to create an another test, that
we classify it as adapted.

The selective testing process for the other changes is very similar to the given samples.
That is why we are not going to give separate details about each modification.

We have previously stated that we can identify impacted elements when using data
and control dependencies and make a reference to the table of changed elements in the
model (see Appendix B). But, how are we going to select elements that may perform actions
differently than expected, after model’s evolution? To solve the problem, we are comparing
data and control dependencies and we separate deleted or added dependencies, that do
not concern directly changed targets. Then, we check and classify tests for each dependent
element, according to the obtained verdict issued from the symbolic test animation.

We have minimized the number of new generated tests to nineteen, to cover the new
and uncovered requirements and test targets. We have animated the selected tests on the
new version: four have failed and eleven have passed. The failed tests, because they
cover still existing behaviors, had to be adapted. Thus, we have produced four adapted
tests using the test generator.

In this section we have illustrated the process of SeTGaM approach on eCinema. In the
next section we introduce the evolution management for security properties on the running
example.

6.3 Security Properties Testing on eCinema

The system has to satisfy the following security property:

Security Property 1: If the cinema user’s database is empty, the only accessible operation
is goToRegister.

Indeed, if this property was to be violated due to an erroneous implementation of the
system, some unauthorized accesses could possibly be granted and remain undetected,
since no user is supposed to access the system. This property deals with access control.

Schema 1:

for_each $X from any_operation_but goToRegister,
use any_operation any_number_of_times

to_reach state_respecting "self.all_registered_users->size() > 1" on_instance "sut"
then
use any_operation any_number_of_times

to_reach state_respecting "self.all_registered_users->size() = 0" on_instance "sut"
then
use $X

In order to verify the security property for the running example, using SBTG we have
created eleven tests, one per operation different from goToRegister, which end with an
error result code, because it is not authorized.

The property and the schema are the same for the eCinema model and its evolution. In
order to check the property for the evolved model we are going to consider tests, unfolded
from the schema, as a test suite for the model. Then, we classify tests using the SeTGaM

D7.3 A MBT approach for evolution | version 1.5 | page 55 / 82

approach and benefit from its results, bit for security properties testing. For all, outdated or
failed tests, if needed to generate more tests to check the security property, the SBTG is
used.

6.4 Comparison of SeTGaM with two other approaches

We now compare the SeTGaM method proposed in this deliverable with other test gen-
eration techniques for managing evolutions: retest-all and regenerate-all. Retest-all is a
commonly used regression testing technique which consists in re-executing all tests from
the old test suite on the evolved model and then generate tests for uncovered requirements’
behaviors. The regenerate-all technique regenerates tests for each behavior of the changed
model without any impact analysis on the evolution wrt the test model. We denote the first
evolution as model (n) and the second as model (n+1), formalizing the expected behaviors,
corresponding to a total of 25 and 47 test targets, respectively.

Status Test Life Cycle Retest-all Regerenate-all SeTGaM

Invalid tests Outdated 7 - 3
Failed - 4

Total invalid - 7 - 7

Valid tests

Re-executed 14 - 11
Updated - -
Unimpacted - - 2
Adapted - - 4
New 22 36 19

Total valid - 36 36 36

Table 6.1: Number of tests for eCinema - evolution using the Retests-all, Regenerate-all and SeTGaM methods

Results, illustrated in Table 6.1, show that the two other methods loose an important
information during testing. The retest-all method considers only three categories of tests:
obsolete (outdated and failed), reusable (re-executed and unimpacted) and new (new and
adapted). So, it is not possible to deduce their origin (e.g. if the test is reusable because
it covers an unmodified part of the system or because it is not impacted by the change).
Moreover, our method makes it possible to know at any moment the origin of the test and its
classification in the corresponding test suite. In addition, as shown in Figure 4.5, we gather
tests into Stagnation, Evolution, Regression and Deletion test suite. Thus, we respectively
ensure that the evolutions did really take place, that system novelties are correctly imple-
mented, and that the evolution did not impact parts of the system that were not supposed to
be modified.

D7.3 A MBT approach for evolution | version 1.5 | page 56 / 82

7 Telling TestStories: Another Point of View

This section explains another view for managing evolution in the MBT process based on the
scenario-based approach Telling TestStories (TTS). The advancements for this second test
approach is part of WP7 T7.3 results, but not part of WP7 Demonstrator.
The basics of the TTS approach, and associated concepts for evolution, are described in
the previous WP7 deliverable (see Section 6.4 of Deliverable D7.2).

The anticipated results we aim for, is that the testing workflow is optimized in such a way
that after an evolution step only the relevant test cases have to be re-executed to ensure
proper system functionality, instead of the whole set of defined test cases. Furthermore,
test cases are organized in a way that gives information about the expected result of their
test runs.

Since TTS is not aiming at automatic generation of tests, but is a framework for their
manual definition, every evolution step, regardless of its origin, is reflected in the model
and an indication to the respective stakeholder is given when manual intervention is likely
required.

The input of TTS is a system model and a set of requirements. Since TTS is a frame-
work for testing service-centric systems, the system model is supposed to describe these
services and their interfaces. Besides the static structure, a system model can further de-
scribe the behavioral aspects of the system, e.g., the activity sequence of certain use cases.
The input by the system’s model and the requirements is used by a test designer to model
test stories.

7.1 Evolutions

Generally, the evolution of certain parts of the system and the propagation to affected parts
is covered by the SecureChange Integrated Process. Here, we shortly describe how TTS
deals with different kinds of evolution. The TTS framework provides the facilities for trace-
able associations among tests and requirements, and among tests and system model ele-
ments.

7.1.1 Requirements Evolution

Requirements can be subdivided into functional and non-functional requirements. Every test
story is always associated to at least one requirement. When a requirement is changed, the
respective tests can be determined by this association. Since the primary focus of TTS is not
the test generation, a test engineer may need to review the corresponding tests and adapt
them according to the changed requirements. When a new requirement is added, new tests
have to be defined by the test engineer. Also if a requirement is removed, the connection to
test stories is used to determine affected tests. In this case, the impacted tests can be used
as negative tests to validate that the functionality is not available anymore.

D7.3 A MBT approach for evolution | version 1.5 | page 57 / 82

7.1.2 Evolution of the System or Environment

Also the system or the environment may evolve over time. Evolutions of the system are
normally triggered by the requirements if the evolution step was planned. In this case, the
impact on the tests is determined as described in the previous Section 4.1.3. On the other
hand, it can also happen, that an unplanned change is observed at the system, e.g., the
redeployment of a running service because a new version is available. In this case, the
corresponding tests are determined, once more, by the association among system model
elements and test model elements. Depending on the modification, the status of the affected
tests changes so that the tests are either re-executed in the next test run, or marked as being
not executable.

Evolutions to the environment are very similar to evolutions of the system. Such typical
evolution step is for instance an update of underlying software, e.g., the operating system.
If the system model captures the elements of the system impacted by this change implied
the identification of impacted tests.

7.2 Methods and Techniques

To handle change in TTS, we attach a state machine to each changeable artefact, that de-
fines its actual state, and triggers resp. receives events to compute new states. Changes
in requirements are indicated by triggers on requirement elements and changes of the in-
frastructure or the system are indicated by triggers on service elements. Consequently,
tests have a state. Following the widely used classification in [21], the type of a test can
be evolution, for testing novelties of the system, regression, for testing non–modified parts
and ensuring that evolution did not unintentionally take place on other parts, stagnation, for
ensuring that evolution did actually take place and changed the behavior of the system, and
discard, for tests which are not relevant any more. Based on this test type, which is com-
puted by states of model elements and a test requirement, a test suite for regression testing
is determined.

In the following, we first explain the underlying metamodel, and then the overall evolution
process and its core process action of change propagation.

7.2.1 Telling TestStories Metamodel

The metamodel is depicted in Figure 7.1. The package Test defines all elements needed
for system testing service centric systems. A TestSuite is a collection of Test elements. It
has a number of TestRequirement elements, e.g., to select tests or define test exit criteria,
and a number of TestRun elements – assigning Verdict values to assertions – attached.
A Test has a Type, which can be either evolution, stagnation, regression, or deletion, and
consists of SequenceElement artifacts. A SequenceElement is either an Assertion defining
how a verdict is computed or a Call element invoking a service operation. It has some data
assigned to the free variables of assertions or calls attached.

7.2.2 Test Life Cycle

Telling TestStories implements the same test suites as described in deliverable D7.2. These
are evolution, regression, stagnation, and additionally deletion. As mentioned in the de-
scription of the metamodel, the element Type determines to which test suite a test belongs.
In this section we explain the different states a test can have, and how the test suite is

D7.3 A MBT approach for evolution | version 1.5 | page 58 / 82

Test

SequenceElement

TestRequirement

TestSuite
Test

Assertion

Call

TestRun

Data

Verdict Type

*

1

1

1*

1

*

1*

Figure 7.1: Telling TestStories Metamodel.

computed out of the test state or transitions among states. The state machine in Figure 7.2
depicts all possible test states and their transitions.

State transitions are not only initiated by direct modifications of Test elements but also
triggered by requirements and services. The event modifyRequirement is triggered by
changes of requirements and the event modifyService is triggered by changes of services.

A test is in state new as long as it has no requirements assigned by the operation as-
signTest. Note that the same operation is also a trigger in the FunctionalRequirement state
machine, i.e., this assignment causes a state transition for both, tests and requirements.
After the assignment of a requirement, a test is in state notExecutable until all assigned
Service elements are in state executable. When a test or an assigned service is modified
such that all assigned services of a test are in state executable, the test also gets the state
executable. A guard condition checks for adherence to this rule.

Test elements have an attribute Type assigned which can be used for test selection.
Depending on the modifications to the model, the Type of a test is updated. If the state of a
test goes from notExecutable to executable its Type is set to evolution because the test
is the result of an evolution step. The same is true if a test is currently in state executable
and one of its assigned services is subject to a modification. On the other hand, if a service
is modified but the current test under consideration is not assigned with that service, the
Type of the test is changed to regression because the test should not be affected by this
modification.

Also the modification of requirements influences the Type attribute of executable tests.
When a requirement assigned to the current test under consideration is modified such that
the test and the requirement are incompatible, the type is set to stagnation because the
test should fail now. If, on the other hand, the requirement and the test are still compatible,
the type is set to regression. The assessment whether a test validates a requirement is a
manual task because the requirements are specified in an informal way. However, the com-
patibility only needs to be checked when a new test–requirement assignment is created, or
when one of these elements is directly changed.

D7.3 A MBT approach for evolution | version 1.5 | page 59 / 82

executable

notExecutable

new

modifyTest()
modifyService(Service: srv)

 [self.calls.service->forAll(state='executable' and
assigned(srv, self)] /

Type = evolution

modifyService(Service: srv)
 [not self.calls.service->forAll(state='executable') and

assigned(srv, self)] /
Type = stagnation

modifyRequirement(Requirement: req)
 [assigned(req, self) and
compatible(req, self)] /

Type = regression

modifyService(Service: srv)
 [not assigned(service, self) and

self.calls.service->forAll(state='executable')] /
Type = regression

modifyService(Service: srv)
 [assigned(srv, self) and

self.calls.service->forAll(state='executable')] /
Type = evolution

modifyRequirement(Requirement:req)
 [assigned(req, self) and

not compatible(req, self)] /
Type = stagnation

assignTest(Requirement: req, Test: test)
 [test = self]

modifyTest()
modifyService(Service: srv)

 [not self.calls.service->forAll(state='executable')]

addTest()

Figure 7.2: State machine describing the life cycle of Test elements.

Test suites are not only implicitely defined by the type of a test but can also be computed
by test selection criteria in OCL. For instance, the following test selection criteria selects all
tests that are supposed to pass, i.e., tests of type evolution or regression.

context Model:
Test::allInstances->
select{t | t.type=’evolution’ or t.type=’regression’}

D7.3 A MBT approach for evolution | version 1.5 | page 60 / 82

8 Integration in SecureChange process

This section presents the relation of the Work package 7 and the other technical work pack-
ages of SecureChange project. In the process of the SecureChange project (cf. Figure 8.1,

!"#$%&$'()*!+

,#$-.%/0+'.$1%/#$/-.#+

2#3-%.#4#*/!+

2#3-%.#4#*/!+#*5%*##.+

6+

7+
2%!8!+'*'90!/+

2%!8!+'!!#!!4#*/+

,#$-.%/0+4):#9+

;#!/+#*5%*##.+

<+

,#$-.%/0+=>"#./++

?+

!"#$%&'&$())'&($&"$(*+,'%-!$.-./*)'0&1+/2%)*./.,''
3''
45.6*0,.('7%)!$(89''
!"#$%&'&($&"$(*+,:;''
3''
4<,(-.'($$'='/.>'4<,(-.:?'@($&"$(*+,A';9''
B'

@'A'+$):#+

B#.%&$'()*+#>"#./+

C+
D+

,#$-.%/0+'.$1%/#$/+

E""9%$'()*+
;#!/+4):#9+

F-!/)4#.+

G+

,/'8#1)9:#.+

G+

Figure 8.1: Process supported by SecureChange project

each WP is identifed by a numbered person), WP7 takes security model as input. In fact,
this security model is composed by three entities. The first entity is the requirements. So

!"#$%&'

()*%&+%&'*%,'
-./0.+%&'
12#3"4#'

()*%&+%&'*%,'
-./0.+%&'
5"67+8"4"%3#'

()*%&+%&'*%,'
-./0.+%&'5+#9'

:;<'

:;='

:;>'

:;?'

@"8+AB*$/%'/%'
C4D0"4"%3*$/%'

:;E'

Figure 8.2: Links between WP7 and others WPs

WP7 can assume traceability between requirements and generated tests. The second entity
is the model of behavior of the system. In order to provide a test oracle, the test model can
predict the expected values of the system. So that we can refine the security model for the

D7.3 A MBT approach for evolution | version 1.5 | page 61 / 82

test model. The third entity is security properties and their evolution. At this project time,
WP7 deals directly with the origin work package that provide informations. The Figure 8.2
gives an overview of partners’ interactions with WP7. The workpackage has interfaces to
4 other work packages. The first is WP3. WP3 provides requirements and their evolutions.
The second is WP4. WP4 provides a validated security model and their evolution. The
third is WP5. WP5 provides risks associated to security properties. The last is WP6. It is
a special link because there is not direct interaction between WP6 and WP7 but they are
complementarity for security verification.

8.1 WP3 – WP7

SecureChange WP3 is dedicated to Evolving Security Requirements Engineering. So, in
this section we show how the bi-directional traceability between Requirements and gener-
ated test cases is managed and maintained through the SecureChange process.

8.1.1 Traceability between functional requirements extracted from specifica-
tion and generated tests

Figure 8.3: Using requirement model to create the test model

The requirements model provided by WP3 gives us a list of Actors, Goals and Actions
to be used in the test model. Actors are used in a use case diagram to define what is the
system under test. Goals and actions are also added in a use case diagram that is used to
create the state machine of test model.
These components are available with a unique short name that is used to tag the OCL code.
This name will be used to enforce the traceability between functional requirements extracted
from specification (by WP3) and the generated tests. Test description contains this name
and a matrix can be created to identify test coverage of the specification.

Each different actor is extracted from the requirements model provided by WP3 and added
to a use case model to help identify which one is the system under test. The Is-A relation-
ship guides us a way to specialize actors. Figure 8.3 shows the link between components
of the requirement model and diagrams of the test model.

D7.3 A MBT approach for evolution | version 1.5 | page 62 / 82

Actions and Goals are used to create a use case diagram that will be detailed by a state
machine. The decompose relationship is used to define the structure of each goal. The Do-
dependency relationship guides us to identify which actor is actually concerned by a goal.
Actions are not sufficiently detailed in the requirement model to be used for the test model
state machine. We need to find more specific information in the specification to be able to
create a usable behavior. The state machine and its OCL code is annotated with tags that
are short names provided by WP3.

The requirement model is used to help the test engineer to create a test model. It con-
tains tags that are also used in requirements, requirement model, test model and tests.
Traceability is improved by a link from specification to generated tests.

In the following section, we introduce how the requirement model evolution can be used
to help the work of the test engineer.

8.1.2 Upgrading a test model by requirements models comparison

Requirements models can be used to upgrade a test model based on identified evolution.
The defined structure of a requirements model makes the comparison of two versions of the
model possible. The comparison produces a file that is used by the test engineer to upgrade
the test model (see Figure 8.4).
The XML file contains, for each component previously mentioned (Actors, Goal and Action),

Figure 8.4: Test model upgrade process

a list of short names (requirement tag) and a status: new, deleted or modified. The status is
used by the test engineer to focus on parts of the test model that need to change.
Interactions between WP3 and WP7 will be applied on the GP case study. More details are
available in deliverable D3.2.

8.2 WP4 – WP7

We describe in this section the connection between WP4, aiming to model adaptive security
designs and verification of the security models, and WP7 aiming at test generation using

D7.3 A MBT approach for evolution | version 1.5 | page 63 / 82

Figure 8.5: Integration between WP7 and WP4

models. From a methodological point of view the two approaches are complementary, and
address a good practice of software engineering: in order to build relevant model based
tests, it is mandatory to dispose of a model that has been extensively checked.

8.2.1 General process

The general process is reminded in Figure 8.5. On one hand, the WP4 world is represented
by the UMLseCh approach/tool that is able to check a set of potential model evolutions
against security properties. The considered security properties are those initially considered
by UMLsec improved by some dedicated properties, designed for the case study.

On the other hand, the WP7 world is based on the TestDesigner technology that is able
to generate model-based test cases from UML models with OCL constraints. TestDesigner
considers a class diagram (that provides the logical data model), an object diagram (that
provides an initial state of the considered system in terms of existing objects and relations
between them), and a statechart diagram with OCL code (that provides a view of the dy-
namics of the system under test in terms of successive states reached by the invocation of
points of control and observation).

In the context of the SecureChange project, the WP7 aims at providing a means for tak-
ing into account the evolutions and the security in the software testing process. To achieve
that, WP7 proposes two solutions to address these issues. Firstly, a dedicated test gen-
eration process, based on user-defined test schemas that formalize test intentions related
to security properties in order to drive automated test generation, is defined. Secondly, a
special process based on an differential analysis of models makes it possible to focus the
test generation effort on a subset of the software without sacrifying the overall validation of
the whole software.

We now present in the following section the concrete integration between WP7 and WP4.

D7.3 A MBT approach for evolution | version 1.5 | page 64 / 82

8.2.2 Concrete integration

We present the integration between WP7 and WP4 w.r.t. the two issues of security proper-
ties validation and evolution testing. For each issue, we present the solution proposed by
WP7, and we show how to integrate this solution with the approach developed in WP4.

Integration w.r.t. security properties

The first integration possibility concerns the validation of security properties. Security prop-
erties are verified on the model using UMLseCh, and have to be considered for testing.

This integration relies on methodological aspects. Indeed, to be used for test generation,
a formal model first has to be verified and validated. Our integration proposal is to be able
to consider in our two approaches (WP4 and WP7) the same security properties, that will
be:

• first, checked on the model so as to ensure that it satisfies the properties, and

• second, used as a basis for model based test generation in order to produces test
cases that exercise (or at least cover) the considered security property.

This verification step is mandatory. If the model does not satisfy a given security prop-
erty, and if this security property is involved in several test cases, then the tests may fail
on a correct implementation, since this latter does not behave as (wrongly) expected by the
model, thus falsifying the validation of the software.

Integration w.r.t. evolutions

The second integration point concerns the evolutions of the model. Whereas the UMLseCh
approach considers a set of possible evolutions for which the preservation of security prop-
erties has to be ensured.

The integration proposed with UMLseCh is as follows.
On one hand, UMLseCh considers a set of possible evolutions for a considered model.

These possible evolutions concern:

• the addition of a new model entity (class, state, etc.)

• the deletion of an existing model entity

These additions/deletions are specified by dedicated stereotypes in the corresponding UML
diagram.

On the other hand, WP7 evolution testing approach considers two models and computes
their differences.

Notice that the two approaches consider models that are designed using different UML
modelling tools (ArgoUML for UMLseCh vs. IBM Rational Software Architect for TestDe-
signer). The switching from one of the notations to the other is not considered, since such
activity is highly time-consuming and would not respond to a concrete need for integration.
Thus, our integration solution has to be the less invasive possible in terms of adaptation of
existing developments.

Our integration proposal consists in:

• using UMLseCh to specify one evolution of the model (a ∆ between the original and
evolved model depicted in Figure 8.5).

D7.3 A MBT approach for evolution | version 1.5 | page 65 / 82

• export this evolution to provide it as an input for the WP7 process.

Having ∆ it will be possible for WP7 to respectively:

• build the new model resulting from the evolution described,

• avoid computing the difference between the model, since it will be directly provided by
∆,

• apply the rest of the methodology without any interference.

More details are available in deliverable D4.2.

8.3 WP5 – WP7

Figure 8.6: Change story of the HOMES case study

This section presents the link with the Work package 5 and the Work package 7. Figure
8.6 depicts the overall change story and the relation between the various technical solutions
within the SecureChange Project. In the overall treatment of the change requirement the
solutions of WP5 Risk assessment methodologies, WP2 SeAAS Architecture and WP7 TTS
(Telling TestStories) will be applied.

The change story is divided in five segments, each with its own technical solutions to
the change requirement and the security properties listed in the previous sections. The five
segments correspond to the following points in time:

D7.3 A MBT approach for evolution | version 1.5 | page 66 / 82

1. At this point in time a simple Home Gateway is already deployed and working suc-
cessfully. The simple Home Gateway is already SeAAS capable and equipped with
the simple security service "Confidentiality Service". The Home Gateway is analysed,
tested and running without security problems. We have a system model and a risk
model for that point in time.

2. At a certain point in time, the Operator notes increasing customer and third party ser-
vice provider complaints. The Operator (depicted as User in the change story) orders
the risk analysis team to update the existing risk analysis and find reasons and causes
for the increasing number of complaints. The risk analysis team applies a risk assess-
ment from a maintenance perspective and provides an updated risk picture, including
newly identified threat scenarios and proposed treatments. The treatment is consid-
ered as an actual change to the system and therefore analysed from a before-after
perspective by the risk analysis team. The resulting risk models depict the risk before
the application of the treatment and the risk after the application of the treatment. In
addition the risk to change is analysed. The results of step 2 are threat scenarios that
serve as input to the test engineers in order to derive test cases. In addition the risk
to change diagram provides the basis for the test engineers to derive regression tests,
which are run after the application of the system change.

3. In step 3 the SeAAS Architecture is configured to deploy an additional security service,
namely a "Non-Repudiation Service" to implement the treatment proposed by the risk
analysis team.

4. In step 4 the SeAAS Architecture has been reconfigured and the test engineers start
to conduct a series of tests on the new system. These tests include a functional
security test to check whether the proposed treatment works as expected. In addition
regression tests are run to check against the potential scenarios identified as a risk to
change.

5. In step 5 the test engineers feedback the results of the various tests to the risk model,
in which the reduction of risk values and the elimination of threats can now be con-
firmed as the treatment has been tested successfully.

Interactions between WP3 and WP7 will be applied on the HOMES and the GP case
studies. More details are available in deliverable D5.3.

8.4 WP6 – WP7

We describe in this section the link between WP6, aiming to verify applet regarding security
properties, and WP7 aiming at test generation using models. From a methodological point of
view the two approaches are complementary just like verification and validation in software
engineering.

8.4.1 Interest of the link between WP6 and WP7

We identified two artefacts shared by WP6 and WP7.
The first one is the system’s implementation. WP6 analyses code and realizes static or
dynamical verification on the implementation. WP7 provides tests to be executed on the
system’s implementation. So, these workpackages deal with a link between the high level
of a conceptual approach and the concrete level of the implementation.

D7.3 A MBT approach for evolution | version 1.5 | page 67 / 82

The second shared artefacts are security requirements. These requirements are translated
into security properties that can be checked on the implementation.

In fact, WP6 and WP7 have no direct communication in the SecureChange process
(depicted in Figure 8.1). The interest of an interaction between these work packages is to
extend the verification and validation process. WP6 uses some hypothesis but cannot verify
it, WP7 can validate these assertions using some dedicated tests. Conversely for WP7,
some properties cannot be validated with an MBT approach but they can be verified by the
WP6 approach.

8.4.2 Concrete scenario on case study

We instantiate the process presented in previous section, on the Global Platform (GP) case
study and its evolution between specification version 2.1.1 and 2.2. For security require-
ments, we choose the security property "information protection" defined in deliverable D1.2.
This property is decomposed in two parts: control flow of applet and access control. The
access control focuses on the data of APDU. An APDU is a command that can be called by
different components of the GP specification, for example it can be used by an applet or a
Security Domain (SD).

Verification

Two kinds of concrete verification can be done. The first verification is the access control. In
this case, we want to verify that protected information cannot be accessed without acquiring
specific rights.

The second verification is the control flow, we want to ensure that there is no possible
access to protected information during execution of different applets. That is, some pro-
tected data (attributes of an applet A) must not be read by an applet B. So during execution
of applet B, there is no possible access to attributes of applet A. Information protection rules
are represented by the smart card security policy.

The verification process is executed during the installation (or update) of an application
by the card content manager. The verifier analyzes the bytecode of the applet in order to
capture the details of information exchange (calls to other applets’ methods, methods of
the applet implementing shareable interfaces, possibly details on information exchange be-
tween variables) and checks if these details are compliant with the security policy of the
smart card system.

Collaborations

We provide two kinds of scenarios. One for the illegal access to security domain services
which decompose into 4 sub-scenarios (see deliverable 6.4). And the second for elicit in-
formation flow which decompose into 5 sub-scenarios. These scenarios demonstrate how
WP6 and WP7 together provide protection against these attack scenarios and the advan-
tages of the connection. On the nine scenarios defined, WP6 and WP7 can address two
separate issues for the protection against threats of the Scenarios 1 and 2 except for the 1.d
and 2.e. In fact, the interest of a connection between these two workpackages is that each
hypothesis proposed by one workpackage is tackled by the other. So the completeness

D7.3 A MBT approach for evolution | version 1.5 | page 68 / 82

of validation can only be done if the workpackages interact as proposed in SecureChange
process. More details are available in deliverable D6.4.

D7.3 A MBT approach for evolution | version 1.5 | page 69 / 82

9 Conclusion

This document gives a summary of the main results of SecureChange WP7 Task 7.3, which
concern a proof-of-concept implementation of a model-based testing for evolution tool. This
demonstrator is based on the original methods and algorithms for handling model-based
testing for evolution and security testing provided in WP7 Task 7.2 and presented in Deliv-
erable 7.2.

The main results address the two dimensions of the problem:

• an approach for testing security properties, based on the use of test schemas that
formalize test needs. Security properties are covered by a test generation process
using a behavioral model of the SUT and associated test schemas.

• an approach for change management by means of model comparison. Our objective
is to ensure the important criteria defined in D7.1: test repository stability, traceability
of changes, impact analysis and ability to automatically structure the test repository
into evolution, regression and stagnation test suites.

Advantages of our approach lean on the same improvement: keeping trace of test cases
through evolution. This allows a better stability of test suites, it also improves the organiza-
tion of the test repository wrt evolution. This is a key factor to help the validation team to
prioritize test execution. We also provide a more efficient test generation process that takes
into account changes in requirements and previous test status to enhance the generation.
This prototype implementation is based on existing technology for automated test genera-
tion (from Smartesting Test Designer tool suite), and goes one step further on functional
evolution management. Moreover it ensures that security properties are well implemented
in the SUT. The results obtained in this research target three distinct activities:

• For model-based security testing by driving test generation from the test model by
test schemas that formalize the testing needs extracted by the validation engineer from
the security properties.

• For test generation based on model evolution analysis in order to generate effi-
ciently an accurate test repository.

• For implementing the different new algorithms and techniques in one demonstra-
tor prototype usable for further experimentation on SecureChange case studies.

The next step of SecureChange WP7, within task 7.4 - Test generation for case studies,
is to experiment the demonstrator in the context of project case studies, and to assess it
with respect to the criteria assessment defined in deliverable 7.1:

• Stability of test repository;

D7.3 A MBT approach for evolution | version 1.5 | page 70 / 82

• Traceability of changes;

• Impact analysis;

• Test suite qualification based on changes;

• Traceability of security properties;

• Completeness of security testing.

D7.3 A MBT approach for evolution | version 1.5 | page 71 / 82

A Requirements for eCinema

Nb REQ Name Description
1 ACCOUNT_MNGT/LOG Log The system must be

able to manage the
login process and al-
low only registered
user to login

2 ACCOUNT_MNGT/REGISTRATION Registration the system must be
able to manage the
user’s accounts

3 BASKET_MNGT/BUY_TICKETS Buy_Tickets The system be able
to allow users to buy
available tickets.

4 BASKET_MNGT/DISPLAY_BASKET
and DISPLAY_BASKET_PRICE

Display_Basket and
Display_Basket_Price

The system must
be able to display
booked tickets and
the total basket’s
price for a con-
nected user

5 BASKET_MNGT/REMOVE_TICKETS Remove_Tickets The system must be
able to allow dele-
tion of all tickets for
a given user

6 CLOSE_APPLICATION Close_Application The system can be
shut down

7 NAVIGATION Navigation In the system is
possible to navigate
from one state to an-
other

Table A.1: Requirements of eCinema.

D7.3 A MBT approach for evolution | version 1.5 | page 72 / 82

REQ
Nb

AIM Name Description

1 LOG_Success Login To login the user must
give a valid user name
and password

1 LOG_Empty_User_Name Login_Empty_User_Name Impossible to connect
with empty user name

1 LOG_Invalid_Password Login_Invalid_Password Impossible to connect
with invalid password

1 LOG_Invalid_UserName Login_Invalid_UserName Impossible to connect
with invalid user name

1 LOG_Logout Logout A user can logout from
the main page

1 LOG_Logout_from_display Logout_from_display A user can logout from
the display monitor
page

2 REG_Empty_User_Name Empty_User_Name An empty user name is
not allowed in registra-
tion process

2 REG_Empty_Password Empty_Password An empty password is
not allowed in registra-
tion process

2 REG_Go_To_Register Register The user is allowed to
create an account on
the web site

2 REG_Login_Already_Exists Login_Already_Exists During registration user
must chose a name not
already existing in the
database

2 REG_Success Valid_Registration After successful regis-
tration the user is trans-
ferred at the home wel-
come page

2 REG_Unregister Unregister A user can delete its
account

3 BUY_Login_Mandatory Buy_Login_Mandatory_to_buy to buy tickets the user
must login

3 BUY_No_More_Money No_More_Money To buy tickets the user
must have enough re-
sources on his account

3 BUY_Sold_Out Ticket_Sold_Out If no available tickets for
the movie a message
”sold out” is displayed
to the user

3 BUY_Success Buy The user can buy
tickets, if there are any
rand then data about
the available tickets
must be updated

Table A.2: Test targets of eCinema part 1/2.

D7.3 A MBT approach for evolution | version 1.5 | page 73 / 82

REQ
Nb

AIM Name Description

4 DIS_Check_Basket Check_Basket A connected user must
be able to display its
booked tickets

4 DIS_Login_Mandatory Login_Mandatory_to
_show

The user must login at
the web site to display
its booked tickets

4 DIS_PRICE_Login_Success Login_Success A connected user must
be able to display the
total price of his basket

4 DIS_PRICE_Login_First Login _First The user must login
first to display the total
price of his basket

5 REM_Del_All_Tickets Del_All_Tickets A user can empty
his basket and then
the booked places
refunded to the user

5 REM_Del_Ticket Del_Ticket A user can chose the
ticket he want to delete,
which is refunded to the
use

6 Close_application Close_application The user is close the
application from the
home page

7 NAV_GO_To_Home Go_To_Home The user is able to re-
turn to the home page

7 NAV_GO_To_Home
_from_registration

Go_To_Home
_from_registration

The user is able to re-
turn to the home page
from the registration
menu

Table A.3: Test targets of eCinema part 2/2.

D7.3 A MBT approach for evolution | version 1.5 | page 74 / 82

B Requirements for eCinema Evolution

Nb REQ Name Description
8 BALANCE_MNGT BalanceManagement The system must be

able to manage one
or several account

9 SUBSCRIPTION_MNGT SubscriptionManagement The system must be
able to manage the
login process and al-
low only registered
user to login

Table B.1: New Requirements of eCinema, evolution.

REQ
Nb

AIM Name Evolution

2 REG_Success Valid_Registration Change
2 REG_Unregister Unregister Change
2 REG_Empty_User_Name Empty_User_Name Change
2 REG_Login_Already_Exists Login_Already_Exists Change
2 REG_Empty_Password Empty_Password Change
3 BUY_No_More_Money No_More_Money Change
3 BUY_Success Buy Deletion
5 REM_Del_All_Tickets Del_All_Tickets Change
5 REM_Del_Ticket Del_Ticket Deletion

Table B.2: Impacts in test targets of eCinema.

D7.3 A MBT approach for evolution | version 1.5 | page 75 / 82

REQ
Nb

AIM Name Description

2 REG_ERROR_SUBSCRIPTION Error_Subscription
3 BUY_Success/STUDENT Buy_Success/Student
3 BUY_Success/CHILD Buy_Success/Child
3 BUY_Success/SENIOR Buy_Success/Senior
3 BUY_Success/NORMAL Buy_Success/Normal
3 BUY_Success/ONEFREE Buy_Success/OneFree
3 BUY_Success/ONEFREE-NORMAL Buy_Success/OneFree-

Normal
5 REM_UPDATE_UserBalance_DEL-

ONEFREE
Del_Ticket_OneFree

5 REM_UPDATE_UserBalance_DEL-
ONEFREE-NORMAL

Del_Ticket_OneFree-
Normal

6 CL_SUBSCRIPTION_MNGT Close_Application
6 CL_BALANCE_MNGT Close_Application
8 BAL_REG_RETRIEVE_MONEY-

LGN_FIRST
Retrieve_Money_Lgn

8 BAL_REG_RETRIEVE_MONEY-OK Retrieve_Money_Ok
8 BAL_REG_ADD_MONEY_OK Deposit_Money_Ok
8 BAL_REG_NEGATIVE _BALANCE Deposit_Money_Negati-

ve_Balance
8 BAL_REG_RETRIEVE-KO Retrieve_Money_Ko
8 BAL_REG_RETRIEVE_Money-Bal-

anceInsufficient
Retrieve_Money_ Bal-
anceInsufficient

8 BAL_RETRIEVE_MONEY-OK Retreive_money_OK
8 BAL_RETRIEVE_MONEY-

LGN_FIRST
Retreive_money _lo-
gin_first

8 BAL_RETRIEVE_MONEY-KO Retreive_money_KO
9 SUB_GO_To_SUBSCRIPTION Go_To_Subscription
9 SUB_REG_SET_UP Set_Subscription_Ok
9 SUB_REG_Error_Sub Set_Subscription_Error
9 SUB_REG_LOGIN_FIRST Set_Subscription_

Login-_First

Table B.3: New test targets of eCinema, evolution.

D7.3 A MBT approach for evolution | version 1.5 | page 76 / 82

C Transitions for eCinema

• t0 - closeApplication() - CLOSE_APPLICATION

• t1 - unregister() - REG_Unregister

• t2 - login(in_userName, in_userPassword) - LGN_SUCCESS

• t3 - login(in_userName,in_userPassword) - LGN_InvalidUsrNamePwd

• t4 - login(in_userName,in_userPassword) - LGN_WrongPwd

• t5 - login(in_userName,in_userPassword) - LGN_InvalidUser

• t6 - buyTicket(in_ticket) - BASKET_MNGT/BUY_TICKETS

• t7 - buyTicket(in_ticket) - Login_First

• t8 - buyTicket(in_ticket) - No_more_ticket

• t9 - logout() - LGN_Logout

• t10 - logout() - LGN_Logout - 2

• t11 - showBoughtTickets() - Logged in

• t12 - showBoughtTickets() - Not logged in - DIS_Login_Mandatory

• t13 - goToHome() - NAV_Go_To_Home

• t14 - goToHome() - NAV_Go_To_Home - 2

• t15 - deleteTicket(in_title) - REM_Del_Ticket

• t16 - deleteAllTickets(in_title)

• t17 - goToRegister()

• t18 - registration(in_userName,in_userPassword) - REG_Success

• t19 - registration(in_userName,in_userPassword) - REG_InvalidUserName

• t20 - registration(in_userName,in_userPassword) - REG_Existing_UserName

• t21 - registration(in_userName,in_userPassword) - REG_InvalidPwd

• t22 - showBasketPrice()- Succes

• t23 - showBasketPrice() - Login_first

• t24 - buyTicket(int_ticket)-No_more_money

D7.3 A MBT approach for evolution | version 1.5 | page 77 / 82

D Transitions for eCinema Evolution

• t0 - closeApplication() - CLOSE_APPLICATION

• t1 - unregister() - REG_Unregister

• t2 - login(in_userName, in_userPassword) - LGN_SUCCESS

• t3 - login(in_userName,in_userPassword)-LGN_InvalidUsrNamePwd

• t4 - login(in_userName,in_userPassword) - LGN_WrongPwd

• t5 - login(in_userName,in_userPassword)-LGN_InvalidUser

• t6 - buyTicket(in_ticket) - BASKET_MNGT/BUY_TICKETS - deleted

• t7 - buyTicket(in_ticket)-Login_First

• t8 - buyTicket(in_ticket)-No_more_ticket

• t9 - logout() - LGN_Logout

• t10 - logout() - LGN_Logout - 2

• t11 - showBoughtTickets() - Logged in

• t12 - showBoughtTickets() - Not logged in - DIS_Login_Mandatory

• t13 - goToHome() - NAV_Go_To_Home

• t14 - goToHome() - NAV_Go_To_Home - 2

• t15 - deleteTicket(in_title) - REM_Del_Ticket - deleted

• t16 - deleteAllTickets(in_title)

• t17 - goToRegister()

• t18 - registration(in_userName,in_userPassword) - REG_Success

• t19 - registration(in_userName,in_userPassword) - REG_InvalidUserName

• t20 - registration(in_userName,in_userPassword) - REG_Existing_UserName

• t21 - registration(in_userName,in_userPassword) - REG_InvalidPwd

• t22 - showBasketPrice() - Succes

D7.3 A MBT approach for evolution | version 1.5 | page 78 / 82

• t23 - showBasketPrice() - Login_first

• t24 - buyTicket(int_ticket) - No_more_money

• t25 - setSubscription() - OK

• t26 - setSubscription() - KO-Sub_Invalid

• t27 - setSubscription() - KO-Err_user

• t28 - goToSubscription()

• t29 - goToHome() - Subscription

• t30 - End() - Subscription

• t31 - deposit() - OK

• t32 - deposit() - KO

• t33 - End() - AM

• t34 - goToHome() - AM

• t35 - registration() - REG_ERROR_SUB

• t36 - buyTicket(in_ticket) - Sub-Child

• t37 - buyTicket(in_ticket) - Sub-Student

• t38 - buyTicket(in_ticket) - Sub-Normal

• t39 - buyTicket(in_ticket) - Sub-Senior

• t40 - buyTicket(in_ticket) - Sub-OneFree

• t41 - buyTicket(in_ticket) - Sub-OneFree_Normal

• t42 - retrieve() - OK

• t43 - retrieve() - BalanceInsufficient

• t44 - retrieve() - KO

• t45 - retrieve() - LGN_FIRST

• t46 - deleteTicket(in_title) - REM_Del_Ticket-Sub

• t47 - deleteTicket(in_title) - REM_Del_Ticket-OneFree

• t48 - deleteTicket(in_title) - REM_Del_Ticket-OneFree-Normal

D7.3 A MBT approach for evolution | version 1.5 | page 79 / 82

Bibliography

[1] B. K. Aichernig, M. Weiglhofer, and F. Wotawa. Improving fault-based conformance
testing. Electron. Notes Theor. Comput. Sci., 220:63–77, December 2008.

[2] P. E. Ammann, P. E. Black, and W. Majurski. Using model checking to generate tests
from specifications. In ICFEM’98, 2nd IEEE Int. Conf. on Formal Engineering Methods,
pages 46–54. IEEE Computer Society Press, December 1998.

[3] F. Basanieri, A. Bertolino, and E. Marchetti. The Cow_Suite approach to planning and
deriving test suites in UML projects. In UML’02, 5-th int. conf. on the UML language,
volume 2460 of LNCS, pages 383–397, London, UK, 2002.

[4] E. Bernard, B. Legeard, X. Luck, and F. Peureux. Generation of test sequences from
formal specifications: GSM 11-11 standard case study. Software: Practice and Experi-
ence, 34(10):915–948, 2004.

[5] A. Bertolino, E. Marchetti, and H. Muccini. Introducing a reasonably complete and
coherent approach for model-based testing. Electron. Notes Theor. Comput. Sci.,
116:85–97, January 2005.

[6] C. Bigot, A. Faivre, J.-P. Gallois, A. Lapitre, D. Lugato, J.-Y. Pierron, and N. Rapin. Auto-
matic test generation with AGATHA. In H. Garavel and J. Hatcliff, editors, TACAS 2003,
Tools and Algorithms for the Construction and Analysis of Systems, 9th International
Conference, volume 2619 of LNCS, pages 591–596. Springer, 2003.

[7] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and M. Utting. A
subset of precise UML for model-based testing. In A-MOST’07, 3rd int. Workshop on
Advances in Model Based Testing, pages 95–104. ACM Press, 2007.

[8] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: A symbolic test generation tool. In
TACAS’02, Tools and Algorithms for the Construction and Analysis of Systems, volume
2280 of LNCS, pages 151–173. Springer, 2002.

[9] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for
finite-state verification. In ICSE’99, 21st international conference on Software engi-
neering, pages 411–420, Los Angeles, California, United States, 1999.

[10] E. Farchi, A. Hartman, and S. S. Pinter. Using a model-based test generator to test for
standard conformance. IBM Systems Journal, 41(1):89–110, 2002.

[11] M. Felderer, R. Breu, J. Chimiak-Opoka, M. Breu, and F. Schupp. Concepts for Model-
based Requirements Testing of Service Oriented Systems. In Proceedings of the
IASTED International Conference, volume 642, page 018, 2009.

D7.3 A MBT approach for evolution | version 1.5 | page 80 / 82

[12] E. Fourneret and F. Bouquet. Impact Analysis for UML/OCL Statechart diagrams based
on Dependence Algorithms for Evolving Critical Software. Technical Report RT2010-
06, LIFC - Laboratoire d’Informatique de l’Université de Franche Comté, September
2010.

[13] L. Frantzen, J. Tretmans, and T.A.C. Willemse. Test generation based on symbolic
specifications. In J. Grabowski and B. Nielsen, editors, FATES 2004, Formal Ap-
proaches to Software Testing, volume 3395 of LNCS, pages 1–15. Springer, 2005.

[14] A. Gargantini and C. Heitmeyer. Using model checking to generate tests from require-
ments specifications. SIGSOFT Softw. Eng. Notes, 24(6):146–162, 1999.

[15] C. Jard and T. Jéron. Tgv: theory, principles and algorithms: A tool for the automatic
synthesis of conformance test cases for non-deterministic reactive systems. Int. J.
Softw. Tools Technol. Transf., 7(4):297–315, 2005.

[16] Bo Jiang, T. H. Tse, Wolfgang Grieskamp, Nicolas Kicillof, Yiming Cao, and Xiang Li.
Regression testing process improvement for specification evolution of real-world proto-
col software. In Proceedings of the 10th International Conference on Quality Software,
pages 62–71, 2010.

[17] J. Julliand, P.-A. Masson, and R. Tissot. Generating security tests in addition to func-
tional tests. In AST’08, 3rd Int. workshop on Automation of Software Test, pages 41–44,
Leipzig, Germany, May 2008.

[18] J. Julliand, P.A. Masson, R. Tissot, and P.C. Bué. Generating tests from B specifications
and dynamic selection criteria. FAC, Formal Aspects of Computing, 2009.

[19] Y. Ledru, F. Dadeau, L. Du Bousquet, S. Ville, and E. Rose. Mastering combinatorial
explosion with the TOBIAS-2 test generator. In ASE’07: Procs of the 22nd IEEE/ACM
int. conf. on Automated Software Engineering, pages 535–536, 2007.

[20] Y. Ledru, L. du Bousquet, O. Maury, and P. Bontron. Filtering tobias combinatorial test
suites. In Michel Wermelinger and Tiziana Margaria, editors, Fundamental Approaches
to Software Engineering, 7th International Conference, FASE 2004, volume 2984 of
Lecture Notes in Computer Science, pages 281–294. Springer, 2004.

[21] H. K. N. Leung and L. White. Insights into regression testing [software testing]. In
Proceedings of Conference on Software Maintenance, pages 60–69. IEEE, 1989.

[22] O. Maury, Y. Ledru, and L. du Bousquet. Intégration de TOBIAS et UCASTING pour
la génération des tests. In ICSSEA’03, 16th Int. Conf. on Software and Systems Engi-
neering and their Applications, Paris, France, 2003.

[23] A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer
Science, 13:45–60, 1981.

[24] G. J. Tretmans and H. Brinksma. TorX: Automated model-based testing. In First Eu-
ropean Conference on Model-Driven Software Engineering, pages 31–43, Nuremberg,
Germany, December 2003.

[25] H. Ural, R. L. Probert, and Y. Chen. Model based regression test suite generation using
dependence analysis. In Proceedings of the third international workshop on Advances
in model-based testing, pages 54–62, 2007.

D7.3 A MBT approach for evolution | version 1.5 | page 81 / 82

[26] L. Van Aertryck and T. Jensen. UML-CASTING: Test synthesis from UML models using
constraint resolution. In AFADL’03, 2003.

D7.3 A MBT approach for evolution | version 1.5 | page 82 / 82

	Document information
	Document change record
	Executive summary
	Abbreviations and Glossary
	Introduction
	Demonstrator overview
	Approach for testing security properties
	Principle
	TestDesigner Schema Language
	Presentation
	Language Key Words
	Language Syntax

	Examples of Test Schemas
	Example 1
	Example 2

	Related Works and Originality

	Approach for change management in the MBT process
	Impact of evolution on Model
	SecureChange MBT approach
	Evolution of Test Cases
	New selective test generation method
	Evolution in Test Suites

	Impact of evolution for security properties
	Evolution of schemas and requirements
	Evolution in Test Suites with respect to Security Testing

	Demonstrator
	Architecture
	SeTGaM
	Smart Publisher

	Test generation improvements
	Model animation API
	Test generation API
	Schema-based test generator

	Graphical User Interface
	Chart panel
	Model selection panel
	Chart selection panel
	SeTGaM process
	Test generation process
	Test publication

	Example
	Example
	General description of eCinema application
	Test Generation with TestDesigner for eCinema

	Evolution of the eCinema's system
	Changes in requirements
	Selective test generation using SeTGaM for eCinema

	Security Properties Testing on eCinema
	Comparison of SeTGaM with two other approaches

	Telling TestStories: Another Point of View
	Evolutions
	Requirements Evolution
	Evolution of the System or Environment

	Methods and Techniques
	Telling TestStories Metamodel
	Test Life Cycle

	Integration in SecureChange process
	WP3 – WP7
	Traceability between functional requirements extracted from specification and generated tests
	Upgrading a test model by requirements models comparison

	WP4 – WP7
	General process
	Concrete integration

	WP5 – WP7
	WP6 – WP7
	Interest of the link between WP6 and WP7
	Concrete scenario on case study

	Conclusion
	Requirements for eCinema
	Requirements for eCinema Evolution
	Transitions for eCinema
	Transitions for eCinema Evolution

